Archive for October, 2021

How to Write a Convincing Mathematical Paper

Let {X} be a Banach Space

Open any mathematical journal and read the first sentence of a paper chosen at random. You will probably find something along the following lines: “Let X be a Banach space”. That is fine if you know what a Banach space is, but meaningless if you don’t.

Continue reading ‘How to Write a Convincing Mathematical Paper’

Mathematical Scandals and Scoundrels

Edna St Vincent Millay’s sonnet “Euclid alone has looked on beauty bare” evokes the ethereal, otherworldly quality of mathematics. Scandalous behaviour is not usually associated with mathematicians, but they are human: pride, overblown ego and thirst for fame have led to skulduggery, plagiarism and even murder. Some of the more egregious scandals are reviewed here [TM221 or search for “thatsmaths” at irishtimes.com].

French postage stamp issued in 1984.

Continue reading ‘Mathematical Scandals and Scoundrels’

The Square Root Spiral of Theodorus

Spiral of Theodorus [image Wikimedia Commons].

The square-root spiral is attributed to Theodorus, a tutor of Plato. It comprises a sequence of right-angled triangles, placed edge to edge, all having a common point and having hypotenuse lengths equal to the roots of the natural numbers.

The spiral is built from right-angled triangles. At the centre is an isosceles triangle of unit side and hypotenuse {\sqrt{2}}. Another triangle, with sides {1} and {\sqrt{2}} and hypotenuse {\sqrt{3}} is stacked upon the first. This process continues, giving hypotenuse lengths {\sqrt{n}} for all {n}.

Continue reading ‘The Square Root Spiral of Theodorus’

A Grand Unification of Mathematics

Rene Descartes

There are numerous branches of mathematics, from arithmetic, geometry and algebra at an elementary level to more advanced fields like number theory, topology and complex analysis. Each branch has its own distinct set of axioms, or fundamental assumptions, from which theorems are derived by logical processes. While each branch has its own flavour, character and methods, there are also strong overlaps and interdependencies. Several attempts have been made to construct a grand unified theory that embraces the entire field of maths  [TM220 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘A Grand Unification of Mathematics’


Last 50 Posts

Categories

Archives