We are all familiar with simple mathematical puzzles that give a short sequence and ask “What is the next number in the sequence”. Simple examples would be

the sequence of odd numbers, the sequence of squares and the Fibonacci sequence.

Follow on twitter: @thatsmaths

Tags: Arithmetic, Numerical Analysis

We are all familiar with simple mathematical puzzles that give a short sequence and ask “What is the next number in the sequence”. Simple examples would be

the sequence of odd numbers, the sequence of squares and the Fibonacci sequence.

Tags: History, Ramanujan

For more than three thousand years, mathematics has played an important role in Indian culture. Sometimes it was studied for practical reasons and sometimes for pure intellectual delight. The earliest traces of mathematics are found in the Indus Valley, around 3000 BC. There is clear evidence of a structured system of weights and measures and samples of decimal-based numeration [TM239 or search for “thatsmaths” at irishtimes.com].

Tags: Astronomy, Mechanics, Relativity

The tiny deviation of the orbit of Mercury from a pure ellipse might seem to be of no consequence. Yet the minute precession of this planet was one of the factors leading to a revolution in our world view. Attempts to explain the anomaly in the context of Newtonian mechanics were unsatisfactory. It was only with the emergence of general relativity that we were able to understand the observed phenomenon. Continue reading ‘Mercury’s Mercurial Orbit’

Tags: Algorithms, Numerical Analysis, Pi

Richardson’s extrapolation procedure yields a significant increase in the accuracy of numerical solutions of differential equations. We consider his elegant illustration of the technique, the evaluation of , and show how the estimates improve dramatically with higher order extrapolation.

[This post is a condensed version of a paper in *Mathematics Today* (Lynch, 2003).]

Continue reading ‘The Power of the 2-gon: Extrapolation to Evaluate Pi’