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We will consider Poincaré’s half-plane model for hyperbolic geometry in two dimensions. It is
named after Henri Poincaré who studied it intensively, although it was originally formulated by
Eugenio Beltrami as a model for non-Euclidean geometry.

The half-plane model comprises the upper half plane H = {(x, y) : y > 0} together with a metric

ds2 =
dx2 + dy2

y2
.

It is remarkable that the entire structure of the space follows from the metric, although not without
some effort.

Metric and Geodesics

What are the “straight lines” in this model? For two points P and Q in H, the distance between
them is

s =

∫ Q

P
ds =

∫ Q

P

√
1 + y′2

y2
dx =

∫ Q

P
L(y, y′) dx

where y′ = dy/dx and L(y, y′) may be called the Lagrangian. We can write down the Euler-
Lagrange equations for the solution that minimises this distance:

d

dx

∂L

∂y′
− ∂L

∂y
= 0 becomes yy′′ + (1 + y′

2
) = 0 .

This is the equation for the geodesics y(x).

How to Solve the Geodesic Equation

One way to find the solution is to look it up in a dusty old book like Kamke [2], where the equation
is found on page 573 (§6.126). The solutions are described as Halbkreise, or semicircles. So, let’s
try the general equation for a circle

(x− x0)2 + (y − y0)2 = a2 .

Plugging this into the equation, we find that it is a solution if y0 = 0. Thank you very much, Herr
Dr. Kamke [2].

Thus, the geodesics in H are the semicircles

y =
√
a2 − (x− x0)2

with centre at (x0, 0) and radius a. Some of these are shown in the figure below.
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Figure 1: Geodesics in the Poincaré Half-plane

Why Hyperbolic Geometry?

We can compute the curvature of the half-plane (H,ds). The details are many, and we shall show
only the main steps. We write the metric, with the usual summation convention, as

ds2 = gµν dxµxν

where

gµν =

(
1/y2 0

0 1/y2

)
gµν =

(
y2 0
0 y2

) (
dx1

dx2

)
=

(
dx
dy

)
The Christoffel symbols of the first and second kind are

[αβ, γ] = 1
2

(
∂gαγ
∂xβ

+
∂gβγ
∂xα

−
∂gαβ
∂xγ

)
Γγαβ = gγδ[αβ, δ]

There are eight of each kind but, for the half-plane, they are zero with the following exceptions:

[1 2, 1] = [2 1, 1] = −[1 1, 2] = [2 2, 2] = −1/y3

Γ1
12 = Γ1

21 = −Γ2
11 = Γ2

22 = −1/y

Now we substitute these into the Riemann curvature tensor:

Rσαβγ =
∂Γσαγ
∂xβ

−
∂Γσβγ
∂xα

+ ΓταγΓστβ − ΓταβΓστγ

See Fleisch [1] for more details. There are sixteen components in this tensor and, once again, the
algebra is intricate. But most of the components vanish, and we are left with just

R1
212 = −R1

221 = R2
121 = −R2

112 = −1/y2

In fully covariant form, the non-zero components are

R1212 = R2121 = −1/y4 R1221 = R2112 = +1/y4
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The Ricci tensor is the contraction
Rαγ = Rσασγ

All that survives are two components

R11 = R22 = −1/y2

Finally, the Ricci scalar is the contraction

R = gµνRµν = Rµµ = y2(−1/y2) + y2(−1/y2) = −2

In the two-dimensional case that we consider, this is related directly to the Gaussian curvature:
κ = 1

2R, so at last we have
κ = −1 .

The Gaussian curvature of our half-plane model has a constant value −1. The space has uniform
negative curvature and is a hyperbolic space.

A slight short-circuit is possible [3]. Defining g = det(gµν), we can write the Gaussian curvature in
terms of an element of the Riemann tensor:

κ = R1212/g = (−1/y4)/(1/y4) = −1 .

An Easier Way to Evaluate Curvature

We define the principal curvatures k1 and k2 of a surface S as the maximum and minimum values
of the curvature of a curve formed by the intersection of S with planes containing the normal
to the surface. Clearly, k1 and k2 require measurements external to the surface itself; they are
extrinsic quantities. In a remarkable theorem, the Theorema Egregium, Gauss showed that the
total curvature κ = k1k2 can be measured intrinsically, using only quantities that can be measured
within the surface itself.

We assume that the surface is specified in terms of two parameters u and v as

x = x(u, v) , y = y(u, v) , z = z(u, v) .

The First Fundamental Form is

ds2 = E(u, v)du2 + 2F (u, v)du dv +G(u, v)dv2.

where the functions E, F and G can be evaluated within the surface. Then the total curvature may
be expressed in terms of these three functions and their first and second derivatives [3, pg. 183]. In
the case of orthogonal coordinates, F = 0, we get:

κ = − 1

EG

[
1

2
(Evv +Guu)− 1

4

(
EuGu + E2

v

E
+
EvGv +G2

u

G

)]
For the present case the First Fundamental Form is

ds2 =
du2 + dv2

v2

so we have E = G = 1/v2 and F = 0. Then the expression for κ can be evaluated and yields the
result:

κ = −1 .

This is certainly simpler and more direct than evaluating the entire fourth-order Riemann tensor.
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Many parallels through a Given Point

We can see from the figure of the half-plane, and the knowledge that the geodesics are semicircles
with centres on the x-axis, that for a given “straight line” and a point not on it, there is more than
one line that does not intersect the given line. That is, many lines can be drawn through the point
that are parallel to the given line. An example is given in the figure below: both thin lines through
P are parallel to the thick line. In fact, there are an infinite number of such lines.

Figure 2: Both lines through P are parallel to the heavy line. There are an infinite number of such
lines through P parallel to the heavy line.
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