Mathematical Scandals and Scoundrels

Edna St Vincent Millay’s sonnet “Euclid alone has looked on beauty bare” evokes the ethereal, otherworldly quality of mathematics. Scandalous behaviour is not usually associated with mathematicians, but they are human: pride, overblown ego and thirst for fame have led to skulduggery, plagiarism and even murder. Some of the more egregious scandals are reviewed here … Continue reading Mathematical Scandals and Scoundrels

A Grand Unification of Mathematics

There are numerous branches of mathematics, from arithmetic, geometry and algebra at an elementary level to more advanced fields like number theory, topology and complex analysis. Each branch has its own distinct set of axioms, or fundamental assumptions, from which theorems are derived by logical processes. While each branch has its own flavour, character and … Continue reading A Grand Unification of Mathematics

Earth System Models simulate the changing climate

The climate is changing, and we need to know what changes to expect and how soon to expect them. Earth system models, which simulate all relevant components of the Earth system, are the primary means of anticipating future changes of our climate [TM219 or search for “thatsmaths” at irishtimes.com]. A Holistic View Over the past century, our … Continue reading Earth System Models simulate the changing climate

Kalman Filters: from the Moon to the Motorway

Before too long, we will be relieved of the burden of long-distance driving. Given the desired destination and access to a mapping system, electronic algorithms will select the best route and control the autonomous vehicle, constantly monitoring and adjusting its direction and speed of travel. The origins of the methods used for autonomous navigation lie … Continue reading Kalman Filters: from the Moon to the Motorway

The Simple Arithmetic Triangle is full of Surprises

Pascal’s triangle is one of the most famous of all mathematical diagrams, simple to construct and yet rich in mathematical patterns. These can be found by a web search, but their discovery by study of the diagram is vastly more satisfying, and there is always a chance of finding something never seen before  [TM212 or search … Continue reading The Simple Arithmetic Triangle is full of Surprises

Multi-faceted aspects of Euclid’s Elements

Euclid’s Elements was the first major work to organise mathematics as an axiomatic system. Starting from a set of clearly-stated and self-evident truths called axioms, a large collection of theorems is constructed by logical reasoning. For some, the Elements is a magnificent triumph of human thought; for others, it is a tedious tome, painfully prolix … Continue reading Multi-faceted aspects of Euclid’s Elements

Improving Weather Forecasts by Reducing Precision

Weather forecasting relies on supercomputers, used to solve the mathematical equations that describe atmospheric flow. The accuracy of the forecasts is constrained by available computing power. Processor speeds have not increased much in recent years and speed-ups are achieved by running many processes in parallel. Energy costs have risen rapidly: there is a multimillion Euro … Continue reading Improving Weather Forecasts by Reducing Precision

Entropy and the Relentless Drift from Order to Chaos

In a famous lecture in 1959, scientist and author C P Snow spoke of a gulf of comprehension between science and the humanities, which had become split into “two cultures”. Many people in each group had a lack of appreciation of the concerns of the other group, causing grave misunderstandings and making the world's problems … Continue reading Entropy and the Relentless Drift from Order to Chaos

Goldbach’s Conjecture: if it’s Unprovable, it must be True

The starting point for rigorous reasoning in maths is a system of axioms. An axiom is a statement that is assumed, without demonstration, to be true. The Greek mathematician Thales is credited with introducing the axiomatic method, in which each statement is deduced either from axioms or from previously proven statements, using the laws of … Continue reading Goldbach’s Conjecture: if it’s Unprovable, it must be True

Machine Learning and Climate Change Prediction

Current climate prediction models are markedly defective, even in reproducing the changes that have already occurred. Given the great importance of climate change, we must identify the causes of model errors and reduce the uncertainty of climate predictions [TM205 or search for “thatsmaths” at irishtimes.com]. The Charney Report In 1979, a study group led by … Continue reading Machine Learning and Climate Change Prediction

Euler: a mathematician without equal and an overall nice guy

Mathematicians are an odd bunch. Isaac Newton was decidedly unpleasant, secretive and resentful while Carl Friedrich Gauss, according to several biographies, was cold and austere, more likely to criticize than to praise. It is frequently claimed that a disproportionate number of mathematicians exhibit signs of autism and have significant difficulties with social interaction and everyday … Continue reading Euler: a mathematician without equal and an overall nice guy

Ireland’s Mapping Grid in Harmony with GPS

The earthly globe is spherical; more precisely, it is an oblate spheroid, like a ball slightly flattened at the poles. More precisely still, it is a triaxial ellipsoid that closely approximates a “geoid”, a surface of constant gravitational potential  [TM199 or search for “thatsmaths” at irishtimes.com]. Mapping the Globe Positions on the globe are given by … Continue reading Ireland’s Mapping Grid in Harmony with GPS

Weather Forecasts get Better and Better

Weather forecasts are getting better. Fifty years ago, predictions beyond one day ahead were of dubious utility. Now, forecasts out to a week ahead are generally reliable  [TM198 or search for “thatsmaths” at irishtimes.com]. Careful measurements of forecast accuracy have shown that the range for a fixed level of skill has been increasing by one day every … Continue reading Weather Forecasts get Better and Better

Mathematics and the Nature of Physical Reality

Applied mathematics is the use of maths to address questions and solve problems outside maths itself. Counting money, designing rockets and vaccines, analysing internet traffic and predicting the weather all involve maths. But why does this work? Why is maths so successful in describing physical reality? How is it that the world can be understood … Continue reading Mathematics and the Nature of Physical Reality

Will mathematicians be replaced by computers?

There are ongoing rapid advances in the power and versatility of AI or artificial intelligence. Computers are now producing results in several fields that are far beyond human capability. The trend is unstoppable, and is having profound effects in many areas of our lives. Will mathematicians be replaced by computers?  [TM195 or search for “thatsmaths” at irishtimes.com]. … Continue reading Will mathematicians be replaced by computers?

Suitable Names for Large Numbers

One year ago, there were just two centibillionaires, Jeff Bezos and Bill Gates. Recently, Facebook's Mark Zuckerberg has joined the Amazon and Microsoft founders. Elon Musk, CEO of Tesla and SpaceX, is tipped to be next to join this exclusive club [TM194 or search for “thatsmaths” at irishtimes.com]. The word centibillionaire has slithered into common usage for … Continue reading Suitable Names for Large Numbers

Is There Anyone Out There? The Drake Equation gives a Clue

The Drake Equation is a formula for the number of developed civilizations in our galaxy, the Milky Way. This number is determined by seven factors. Some are known with good accuracy but the values of most are quite uncertain. It is a simple equation comprising seven terms multiplied together [TM193 or search for “thatsmaths” at … Continue reading Is There Anyone Out There? The Drake Equation gives a Clue

Cornelius Lanczos – Inspired by Hamilton’s Quaternions

In May 1954, Cornelius Lanczos took up a position as senior professor in the School of Theoretical Physics at the Dublin Institute for Advanced Studies (DIAS). The institute had been established in 1940 by Eamon de Valera, with a School of Theoretical Physics and a School of Celtic Studies, reflecting de Valera's keen interest in … Continue reading Cornelius Lanczos – Inspired by Hamilton’s Quaternions

The Geography of Europe is Mapped in our Genes

It may seem too much to expect that a person's geographic origin can be determined from a DNA sample. But, thanks to a mathematical technique called principal component analysis, this can be done with remarkable accuracy. It works by reducing multi-dimensional data sets to just a few variables  [TM189; or search for “thatsmaths” at irishtimes.com ]. … Continue reading The Geography of Europe is Mapped in our Genes

Pooling Expertise to Tackle Covid-19

Our lives have been severely restricted in recent months. We are assured that the constraints have been imposed following “the best scientific advice”, but what is the nature of this advice? Among the most important scientific tools used for guidance on the Covid-19 outbreak are mathematical models  [TM188; or search for “thatsmaths” at irishtimes.com ]. A … Continue reading Pooling Expertise to Tackle Covid-19

Changing the way that we look at the world

Albrecht Dürer was born in Nuremberg in 1471, third of a family of eighteen children. Were he still living, he would be celebrating his 549th birthday today. Dürer's artistic genius was clear from an early age, as evidenced by a self-portrait he painted when just thirteen [TM187; or search for “thatsmaths” at irishtimes.com ]. In 1494, … Continue reading Changing the way that we look at the world

Covid-19: Modelling the evolution of a viral outbreak

There is widespread anxiety about the threat of the Covid-19 virus. Mathematics now plays a vital role in combating the spread of epidemics, and will help us to bring this outbreak under control. For centuries, mathematics has been used to solve problems in astronomy, physics and engineering. But now biology and medicine have become topics … Continue reading Covid-19: Modelling the evolution of a viral outbreak

How many numbers begin with a 1? More than 30%!

The irregular distribution of the first digits of numbers in data-bases provides a valuable tool for fraud detection. A remarkable rule that applies to many datasets was accidentally discovered by an American physicist, Frank Benford, who described his discovery in a 1938 paper, "The Law of Anomalous Numbers" [TM181 or search for “thatsmaths” at irishtimes.com]. … Continue reading How many numbers begin with a 1? More than 30%!

The “extraordinary talent and superior genius” of Sophie Germain

When a guitar string is plucked, we don't see waves travelling along the string. This is because the ends are fixed. Instead, we see a standing-wave pattern. Standing waves are also found on drum-heads and on the sound-boxes of violins. The shape of a violin strongly affects the quality and purity of the sound, as … Continue reading The “extraordinary talent and superior genius” of Sophie Germain

A New Mathematical Discovery from Neutrino Physics

Although abstract in character, mathematics has concrete origins: the greatest advances have been inspired by the natural world. Recently, a new result in linear algebra was discovered by three physicists trying to understand the behaviour of neutrinos [TM176 or search for “thatsmaths” at irishtimes.com]. Neutrinos are sub-atomic particles that interact only weakly with matter, so that they … Continue reading A New Mathematical Discovery from Neutrino Physics

Airport Baggage Screening with X-Ray Tomography

When you check in your baggage for a flight, it must be screened before it is allowed on the plane. Baggage screening detects threats within luggage and personal belongings by x-ray analysis as they pass along a conveyor belt. Hold-baggage and passenger screening systems are capable of detecting contraband materials, narcotics, explosives and weapons [TM175 … Continue reading Airport Baggage Screening with X-Ray Tomography

The Vastness of Mathematics: No One Knows it All

No one person can have mastery of the entirety of mathematics. The subject has become so vast that the best that can be achieved is a general understanding and appreciation of the main branches together with expertise in one or two areas [TM174 or search for “thatsmaths” at irishtimes.com]. In the sciences, old theories fade away … Continue reading The Vastness of Mathematics: No One Knows it All

Maths and Poetry: Beauty is the Link

Mathematicians are not renowned for their ability to reach the deepest recesses of the human soul. This talent is usually associated with great artists and musicians, and a good poet can move us profoundly with a few well-chosen words [TM173 or search for “thatsmaths” at irishtimes.com]. William Rowan Hamilton, whose work we celebrate during Maths Week, was … Continue reading Maths and Poetry: Beauty is the Link

Emergence of Complex Behaviour from Simple Roots

It is exhilarating to watch a large flock of birds swarming in ever-changing patterns. Swarming is an emergent behaviour, resulting from a set of simple rules followed by each individual animal, bird or fish, without any centralized control or leadership. A murmuration of starlings is a breathtaking sight, with thousands of birds moving in harmony, … Continue reading Emergence of Complex Behaviour from Simple Roots