K3 implies the Inverse Square Law.

Kepler-DDR-Stamp-1971

Johannes Kepler. Stamp issued by the German Democratic Republic in 1971, the 400th anniversary of Kepler’s birth.

Kepler formulated three remarkable laws of planetary motion. He deduced them directly from observations of the planets, most particularly of the motion of Mars. The first two laws appeared in 1609 in Kepler’s Astronomia Nova. The first law (K1) describes the orbit of a planet as an ellipse with the Sun at one focus. The second law (K2) states that the radial line from Sun to planet sweeps out equal areas in equal times; we now describe this in terms of conservation of angular momentum.

The third law (K3), which appeared in 1619 in Kepler’s Harmonices Mundi, is of a different character. It does not relate to a single planet, but connects the motions of different planets. It states that the squares of the orbital periods vary in proportion to the cubes of the semi-major axes. For circular orbits, the period squared is proportional to the radius cubed.

Continue reading ‘K3 implies the Inverse Square Law.’

Closing the Gap between Prime Numbers

Occasionally, a major mathematical discovery comes from an individual working in isolation, and this gives rise to great surprise. Such an advance was announced by Yitang Zhang six years ago. [TM161 or search for “thatsmaths” at irishtimes.com].

Yitang-Zhang-Colour

Yitang Zhang

Continue reading ‘Closing the Gap between Prime Numbers’

Massive Collaboration in Maths: the Polymath Project

Sometimes proofs of long-outstanding problems emerge without prior warning. In the 1990s, Andrew Wiles proved Fermat’s Last Theorem. More recently, Yitang Zhang announced a key result on bounded gaps in the prime numbers. Both Wiles and Zhang had worked for years in isolation, keeping abreast of developments but carrying out intensive research programs unaided by others. This ensured that they did not have to share the glory of discovery, but it may not be an optimal way of making progress in mathematics.

Polymath

Timothy-Gowers-2012-Half

Timothy Gowers in 2012 [image Wikimedia Commons].

Is massively collaborative mathematics possible? This was the question posed in a 2009 blog post by Timothy Gowers, a Cambridge mathematician and Fields Medal winner. Gowers suggested completely new ways in which mathematicians might work together to accelerate progress in solving some really difficult problems in maths. He envisaged a forum for the online discussion of problems. Anybody interested could contribute to the discussion. Contributions would be short, and could include false routes and failures; these are normally hidden from view so that different workers repeat the same mistakes.

Continue reading ‘Massive Collaboration in Maths: the Polymath Project’

A Pioneer of Climate Modelling and Prediction

Norman-Phillips

Norman Phillips (1923-2019)

Today we benefit greatly from accurate weather forecasts. These are the outcome of a long struggle to advance the science of meteorology. One of the major contributors to that advancement was Norman A. Phillips, who died in mid-March, aged 95. Phillips was the first person to show, using a simple computer model, that mathematical simulation of the Earth’s climate was practicable [TM160 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘A Pioneer of Climate Modelling and Prediction’

A Chirping Elliptic Rocker

Sitting at the breakfast table, I noticed that a small cereal bowl placed within another larger one was rocking, and that the period became shorter as the amplitude died down. What was going on? 

Rocking-Bowl

A small bowl with its handles resting on the rim of a larger bowl. The handles are approximately elliptical in cross-section.

Continue reading ‘A Chirping Elliptic Rocker’

Joseph Fourier and the Greenhouse Effect

Jean-Baptiste Joseph Fourier, French mathematician and physicist, was born in Auxerre 251 years ago today. He is best known for the mathematical techniques that he developed in his analytical theory of heat transfer. Over the past two centuries, his methods have evolved into a major subject, harmonic analysis, with widespread applications in number theory, signal processing, quantum mechanics, weather prediction and a broad range of other fields [TM159 or search for “thatsmaths” at irishtimes.com].

GreenhouseEffect

Greenhouse Effect [Image Wikimedia Commons]

Continue reading ‘Joseph Fourier and the Greenhouse Effect’

The Kill-zone: How to Dodge a Sniper’s Bullet

Under mild simplifying assumptions, a projectile follows a parabolic trajectory. This results from Newton’s law of motion. Thus, for a fixed energy, there is an accessible region around the firing point comprising all the points that can be reached. We will derive a mathematical description for this kill-zone (the term kill-zone, used for dramatic effect, is the region embracing all the points that can be reached by a sniper’s bullet, given a fixed muzzle velocity).

Sniper-Killzone-1 Family of trajectories with fixed initial speed and varying launch angles. Two particular trajectories are shown in black. Continue reading ‘The Kill-zone: How to Dodge a Sniper’s Bullet’


Last 50 Posts

Categories