How many numbers begin with a 1? More than 30%!

The irregular distribution of the first digits of numbers in data-bases provides a valuable tool for fraud detection. A remarkable rule that applies to many datasets was accidentally discovered by an American physicist, Frank Benford, who described his discovery in a 1938 paper, “The Law of Anomalous Numbers” [TM181 or search for “thatsmaths” at].


Continue reading ‘How many numbers begin with a 1? More than 30%!’

A Ring of Water Shows the Earth’s Spin

Around 1913, while still an undergraduate, American physicist Arthur Compton described an experiment to demonstrate the rotation of the Earth using a simple laboratory apparatus.


Continue reading ‘A Ring of Water Shows the Earth’s Spin’

Using Maths to Reduce Aircraft Noise

If you have ever tried to sleep under a flight-path near an airport, you will know how serious the problem of aircraft noise can be. Aircraft noise is amongst the loudest sounds produced by human activities. The noise is over a broad range of frequencies, extending well beyond the range of hearing. The problem of aviation noise has become more severe as aircraft engines have become more powerful  [TM180 or search for “thatsmaths” at].


Engine inlet of a CFM56-3 turbofan engine on a Boeing 737-400 [image Wikimedia Commons].

Continue reading ‘Using Maths to Reduce Aircraft Noise’

The Rambling Roots of Wilkinson’s Polynomial

Finding the roots of polynomials has occupied mathematicians for many centuries. For equations up to fourth order, there are algebraic expressions for the roots. For higher order equations, many excellent numerical methods are available, but the results are not always reliable.


A 10th-order polynomial (blue) and a slightly perturbed version, with the coefficient of {x^9} changed by one part in a million.

Continue reading ‘The Rambling Roots of Wilkinson’s Polynomial’

Adjoints of Vector Operators

We take a fresh look at the vector differential operators grad, div and curl. There are many vector identities relating these. In particular, there are two combinations that always yield zero results:

\displaystyle \begin{array}{rcl} \mathbf{curl}\ \mathbf{grad}\ \chi &\equiv& 0\,, \quad \mbox{for all scalar functions\ }\chi \\ \mathrm{div}\ \mathbf{curl}\ \boldsymbol{\psi} &\equiv& 0\,, \quad \mbox{for all vector functions\ }\boldsymbol{\psi} \end{array}

Question: Is there a connection between these identities?


Continue reading ‘Adjoints of Vector Operators’

The “extraordinary talent and superior genius” of Sophie Germain

When a guitar string is plucked, we don’t see waves travelling along the string. This is because the ends are fixed. Instead, we see a standing-wave pattern. Standing waves are also found on drum-heads and on the sound-boxes of violins. The shape of a violin strongly affects the quality and purity of the sound, as it determines the mixture of standing wave harmonics that it can sustain [TM179 or search for “thatsmaths” at].


French postage stamp, issued in 2016, to commemorate the
250th anniversary of the birth of Sophie Germain (1776-1831).

Continue reading ‘The “extraordinary talent and superior genius” of Sophie Germain’

Grad, Div and Curl on Weather Maps: a Gateway to Vector Analysis

Vector analysis can be daunting for students. The theory can appear abstract, and operators like Grad, Div and Curl seem to be introduced without any obvious motivation. Concrete examples can make things easier to understand. Weather maps, easily obtained on the web, provide real-life applications of vector operators.


Fig. 1. An idealized scalar field representing the mean sea-level atmospheric pressure over the North Atlantic area.

Continue reading ‘Grad, Div and Curl on Weather Maps: a Gateway to Vector Analysis’

Last 50 Posts