The Beer Mat Game

Alice and Bob, are enjoying a drink together. Sitting in a bar-room, they take turns placing beer mats on the table. The only rules of the game are that the mats must not overlap or overhang the edge of the table. The winner is the player who puts down the final mat. Is there a winning strategy for Alice or for Bob?


Image from Flickr. 

We start with the simple case of a circular table and circular mats. In this case, there is a winning strategy for the first player. Before reading on, can you see what it is?

* * *

Continue reading ‘The Beer Mat Game’

Fractal Complexity of Finnegans Wake

Tomorrow we celebrate Bloomsday, the day of action in Ulysses. Most of us regard Joyce’s singular book as a masterpiece, even if we have not read it. In contrast, Finnegans Wake is considered by some as a work of exceptional genius, by others as impenetrable bafflegab [See TM117 or search for “thatsmaths” at].


Wavelet transform of sentence length sequence in Ulysses. Note the structural change around sentence number 13,000. Image from Drozdz, et al (2016).

Continue reading ‘Fractal Complexity of Finnegans Wake’

A Remarkable Pair of Sequences

The terms of the two integer sequences below are equal for all {n} such that {1<n<777{,}451{,}915{,}729{,}368},  but equality is violated for this enormous value and, intermittently, for larger values of {n}.


Continue reading ‘A Remarkable Pair of Sequences’

Beautiful Patterns in Maths and Music

The numerous connections between mathematics and music have long intrigued practitioners of both. For centuries scholars and musicians have used maths to analyze music and also to create it. Many of the great composers had a deep understanding of the mathematical principles underlying music. Johann Sebastian Bach was the grand master of structural innovation and invention in music. While his compositions are the free creations of a genius, they have a fundamentally mathematical basis [See TM116 or search for “thatsmaths” at].


Johann Sebastian Bach, the grand master of structural innovation and invention in music.

Continue reading ‘Beautiful Patterns in Maths and Music’

Wavelets: Mathematical Microscopes

In the last post, we saw how Yves Meyer won the Abel Prize for his work with wavelets. Wavelets make it easy to analyse, compress and transmit information of all sorts, to eliminate noise and to perform numerical calculations. Let us take a look at how they came to be invented.


Continue reading ‘Wavelets: Mathematical Microscopes’

Yves Meyer wins 2017 Abel Prize

On 23 May King Harald V of Norway will present the Abel Prize to French mathematician Yves Meyer. Each year, the prize is awarded to a laureate for “outstanding work in the field of mathematics”. Comparable to a Nobel Prize, the award is named after the exceptional Norwegian, Niels Henrik Abel who, in a short life from 1802 to 1829, made dramatic advances in mathematics. Meyer was chosen for his development of the mathematical theory of wavelets. [See TM115 or search for “thatsmaths” at].


Continue reading ‘Yves Meyer wins 2017 Abel Prize’

Hearing Harmony, Seeing Symmetry

Musical notes that are simply related to each other have a pleasing effect when sounded together. Each tone has a characteristic rate of oscillation, or frequency. For example, Middle C on the piano oscillates 264 times per second or has a frequency of 264 Hz (Hertz). If the frequencies of two notes have a ratio of two small whole numbers, the notes are harmonically related and sound pleasant when played together.


Beats from two notes close in pitch.

Continue reading ‘Hearing Harmony, Seeing Symmetry’

Last 50 Posts