Learning calculus at school, we soon find out that while differentiation is relatively easy, at least for simple functions, integration is hard. So hard indeed that, in many cases, it is impossible to find a nice function that is the integral (or anti-derivative) of a given one. Thus, given we can usually find , whereas we may not be able to find .

## Archive Page 2

### The Monte-Carlo Method

Published May 28, 2020 Occasional Leave a CommentTags: Algorithms, Numerical Analysis

### Changing the way that we look at the world

Published May 21, 2020 Irish Times Leave a CommentTags: Geometry

Albrecht Dürer was born in Nuremberg in 1471, third of a family of eighteen children. Were he still living, he would be celebrating his 549th birthday today. Dürer’s artistic genius was clear from an early age, as evidenced by a self-portrait he painted when just thirteen [TM187; or search for “thatsmaths” at irishtimes.com ].

In 1494, Dürer visited Italy, where he travelled for a year. A novel connection between art and mathematics was emerging around that time. By using rules of perspective, artists could represent objects in three-dimensional space on a plane canvas with striking realism. Dürer was convinced that “the new art must be based upon science; in particular, upon mathematics, as the most exact, logical, and graphically constructive of the sciences”*.*

Continue reading ‘Changing the way that we look at the world’

The development of perspective in the early Italian Renaissance opened the doors of perception just a little wider. Perspective techniques enabled artists to create strikingly realistic images. Among the most notable were Piero della Francesca and Leon Battista Alberti, who invented the method of perspective drawing.

### John Casey: a Founder of Modern Geometry

Published May 7, 2020 Irish Times Leave a CommentTags: Geometry, Ireland

Next Tuesday – 12th May – is the 200^{th} anniversary of the birth of John Casey, a notable Irish geometer. Casey was born in 1820 in Kilbeheny, Co Limerick. He was educated in nearby Mitchelstown, where he showed great aptitude for mathematics and also had a gift for languages. He became a mathematics teacher, first in Tipperary Town and later in Kilkenny [TM186; or search for “thatsmaths” at irishtimes.com ].

### Order in the midst of Chaos

Published April 30, 2020 Occasional 1 CommentTags: Combinatorics, Graph Theory

We open with a simple mathematical puzzle that is easily solved using only elementary reasoning. Imagine a party where some guests are friends while others are unacquainted. Then the following is always true:

*No matter how many guests there are at the party, there are
always two guests with the same number of friends present.*

If you wish, try proving this before reading on. The proof is outlined at the end of this post.

### John Horton Conway: a Charismatic Genius

Published April 23, 2020 Occasional Leave a CommentTags: Games, Group Theory, Number Theory, Recreational Maths, Topology

John Horton Conway was a charismatic character, something of a performer, always entertaining his fellow-mathematicians with clever magic tricks, memory feats and brilliant mathematics. A Liverpudlian, interested from early childhood in mathematics, he studied at Gonville & Caius College in Cambridge, earning a BA in 1959. He obtained his PhD five years later, after which he was appointed Lecturer in Pure Mathematics.

In 1986, Conway moved to Princeton University, where he was Professor of Mathematics and John Von Neumann Professor in Applied and Computational Mathematics. He was awarded numerous honours during his career. Conway enjoyed emeritus status from 2013 until his death just two weeks ago on 11 April.

### Exponential Growth must come to an End

Published April 16, 2020 Irish Times Leave a CommentTags: Analysis, Applied Maths

In its initial stages, the Covid-19 pandemic grew at an exponential rate. What does this mean? The number of infected people in a country is growing exponentially if it increases by a fixed multiple R each day: if N people are infected today, then R times N are infected tomorrow. The size of the growth-rate R determines how rapidly the virus is spreading. An example should make this clear [TM185 or search for “thatsmaths” at irishtimes.com].

*A Mathematician’s Miscellany*. It was later analysed in detail by Sheldon Ross in his 1988 book

*A First Course in Probability*.

### The Mathematics of Fair Play in Video Games

Published April 2, 2020 Irish Times Leave a CommentTags: Algorithms, Games, Hamilton

Video games generate worldwide annual sales of about $150 billion. With millions of people confined at home with time to spare, the current pandemic may benefit the industry. At the core of a video game is a computer program capable of simulating a range of phenomena in the real world or in a fantasy universe, of generating realistic imagery and of responding to the actions and reactions of the players. At every level, mathematics is crucial [TM184 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘The Mathematics of Fair Play in Video Games’

### Bang! Bang! Bang! Explosively Large Numbers

Published March 26, 2020 Occasional Leave a CommentTags: Algebra, Number Theory

which is approximately . The number of atoms in the universe is estimated to be about . When we consider permutations of large sets, even more breadth-taking numbers emerge.

Continue reading ‘Bang! Bang! Bang! Explosively Large Numbers’

### Covid-19: Modelling the evolution of a viral outbreak

Published March 19, 2020 Irish Times Leave a CommentTags: Epidemiology

There is widespread anxiety about the threat of the Covid-19 virus. Mathematics now plays a vital role in combating the spread of epidemics, and will help us to bring this outbreak under control. For centuries, mathematics has been used to solve problems in astronomy, physics and engineering. But now biology and medicine have become topics of mathematical investigation, and applications in these areas are certain to expand in the future [TM183 or search for “thatsmaths” at irishtimes.com].

How rapidly will the viral infection spread? How long will it remain a problem? When will it reach a peak and how quickly will it die out? Most important, what effective steps can we can take to control the outbreak and to minimize the damage caused? When vaccines become available, what is the optimal strategy for their use? Models provide valuable evidence for decision makers.

Continue reading ‘Covid-19: Modelling the evolution of a viral outbreak’

### Samuel Haughton and the Twelve Faithless Hangmaids

Published March 12, 2020 Occasional Leave a CommentTags: Applied Maths

In his study of humane methods of hanging, Samuel Haughton (1866) considered the earliest recorded account of execution by hanging (see Haughton’s Drop on this site). In the twenty-second book of the *Odyssey*, Homer described how the twelve faithless handmaids of Penelope “lay by night enfolded in the arms of the suitors” who were vying for Penelope’s hand in marriage. Her son Telemachus, with the help of his comrades, hanged all twelve handmaids on a single rope.

Continue reading ‘Samuel Haughton and the Twelve Faithless Hangmaids’

### Samuel Haughton and the Humane Drop

Published March 5, 2020 Irish Times Leave a CommentTags: Applied Maths, History

Samuel Haughton was born in Co. Carlow in 1821. He entered Trinity College Dublin aged just sixteen and graduated in 1843. He was elected a fellow in 1844 and was appointed professor of geology in 1851. He took up the study of medicine and graduated as a Doctor of Medicine in 1862, aged 40 [TM182 or search for “thatsmaths” at irishtimes.com].

In addition to his expertise in geology and medicine, Haughton was a highly talented applied mathematician. His mathematical investigations included the study of the motion of solid and fluid bodies, solar radiation, climatology, animal mechanics and ocean tides. One of his more bizarre applications of mathematics was to demonstrate a humane method of execution by hanging, by lengthening the drop to ensure instant death.

### Zhukovsky’s Airfoil

Published February 27, 2020 Occasional Leave a CommentTags: Applied Maths, Fluid Dynamics

A simple transformation with remarkable properties was used by Nikolai Zhukovsky around 1910 to study the flow around aircraft wings. It is defined by

and is usually called the *Joukowsky Map*. We begin with a discussion of the theory of fluid flow in two dimensions. Readers familiar with 2D potential flow may skip to the section *Joukowsky Airfoil*.

### How many numbers begin with a 1? More than 30%!

Published February 20, 2020 Irish Times Leave a CommentTags: Probability, Statistics

The irregular distribution of the first digits of numbers in data-bases provides a valuable tool for fraud detection. A remarkable rule that applies to many datasets was accidentally discovered by an American physicist, Frank Benford, who described his discovery in a 1938 paper, “The Law of Anomalous Numbers” [TM181 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘How many numbers begin with a 1? More than 30%!’

### A Ring of Water Shows the Earth’s Spin

Published February 13, 2020 Occasional Leave a CommentTags: Geophysics, Mechanics

Around 1913, while still an undergraduate, American physicist Arthur Compton described an experiment to **demonstrate the rotation of the Earth** using a simple laboratory apparatus.

### Using Maths to Reduce Aircraft Noise

Published February 6, 2020 Irish Times Leave a CommentTags: Fluid Dynamics, modelling

If you have ever tried to sleep under a flight-path near an airport, you will know how serious the problem of aircraft noise can be. Aircraft noise is amongst the loudest sounds produced by human activities. The noise is over a broad range of frequencies, extending well beyond the range of hearing. The problem of aviation noise has become more severe as aircraft engines have become more powerful [TM180 or search for “thatsmaths” at irishtimes.com].

### The Rambling Roots of Wilkinson’s Polynomial

Published January 30, 2020 Occasional Leave a CommentTags: Algebra, Numerical Analysis

Finding the roots of polynomials has occupied mathematicians for many centuries. For equations up to fourth order, there are algebraic expressions for the roots. For higher order equations, many excellent numerical methods are available, but the results are not always reliable.

Continue reading ‘The Rambling Roots of Wilkinson’s Polynomial’

### Adjoints of Vector Operators

Published January 23, 2020 Occasional Leave a CommentTags: Algebra, Analysis

We take a fresh look at the vector differential operators grad, div and curl. There are many vector identities relating these. In particular, there are two combinations that always yield zero results:

**Question: Is there a connection between these identities?**

### The “extraordinary talent and superior genius” of Sophie Germain

Published January 16, 2020 Irish Times Leave a CommentTags: History, Mechanics, Number Theory

When a guitar string is plucked, we don’t see waves travelling along the string. This is because the ends are fixed. Instead, we see a standing-wave pattern. Standing waves are also found on drum-heads and on the sound-boxes of violins. The shape of a violin strongly affects the quality and purity of the sound, as it determines the mixture of standing wave harmonics that it can sustain [TM179 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘The “extraordinary talent and superior genius” of Sophie Germain’

### Grad, Div and Curl on Weather Maps: a Gateway to Vector Analysis

Published January 9, 2020 Occasional Leave a CommentTags: Analysis, Numerical Weather Prediction

Vector analysis can be daunting for students. The theory can appear abstract, and operators like Grad, Div and Curl seem to be introduced without any obvious motivation. Concrete examples can make things easier to understand. Weather maps, easily obtained on the web, provide real-life applications of vector operators.

Continue reading ‘Grad, Div and Curl on Weather Maps: a Gateway to Vector Analysis’

### The knotty problem of packing DNA

Published January 2, 2020 Irish Times Leave a CommentTags: biology, Topology

Soon it will be time to pack away the fairy lights. If you wish to avoid the knotty task of disentangling them next December, don’t just throw them in a box; roll them carefully around a stout stick or a paper tube. Any long and flexible string or cable, squeezed into a confined volume, is likely to become entangled: just think of garden hoses or the wires of headphones [TM178 or search for “thatsmaths” at irishtimes.com].

### Divergent Series Yield Valuable Results

Published December 26, 2019 Occasional Leave a CommentTags: Analysis

Mathematicians have traditionally dealt with convergent series and shunned divergent ones. But, long ago, astronomers found that divergent expansions yield valuable results. If these so-called asymptotic expansions are truncated, the error is bounded by the first term omitted. Thus, by stopping just before the smallest term, excellent approximations may be obtained.

### Having your Christmas Cake and Eating it

Published December 19, 2019 Irish Times Leave a CommentTags: Algorithms

As Christmas approaches, the question of fair sharing comes into focus. Readers can rejoice that there has been a recent breakthrough in cake-cutting theory. Cake cutting may sound limited, but it is important for many practical problems. A cake is a metaphor for a parcel of land to be divided, broadcast frequencies to be allocated, divorce settlements, chores to be done by flatmates, border resolutions or any other valuable or scarce resource to be shared [TM177 or search for “thatsmaths” at irishtimes.com].

### The Intermediate Axis Theorem

Published December 12, 2019 Occasional Leave a CommentTags: Mechanics

In 1985, cosmonaut Vladimir Dzhanibekov commanded a mission to repair the space station Salyut-7. During the operation, he flicked a wing-nut to remove it. As it left the end of the bolt, the nut continued to spin in space, but every few seconds, it turned over through . Although the angular momentum did not change, the rotation axis moved in the body frame. The nut continued to flip back and forth, although there were no forces or torques acting on it.

Continue reading ‘The Intermediate Axis Theorem’### A New Mathematical Discovery from Neutrino Physics

Published December 5, 2019 Irish Times Leave a CommentTags: Physics

Although abstract in character, mathematics has concrete origins: the greatest advances have been inspired by the natural world. Recently, a new result in linear algebra was discovered by three physicists trying to understand the behaviour of neutrinos [TM176 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘A New Mathematical Discovery from Neutrino Physics’

### Archimedes and the Volume of a Sphere

Published November 28, 2019 Occasional 1 CommentTags: Archimedes, Geometry

One of the most remarkable and important mathematical results obtained by Archimedes was the determination of the volume of a sphere. Archimedes used a technique of sub-dividing the volume into slices of known cross-sectional area and adding up, or integrating, the volumes of the slices. This was essentially an application of a technique that was — close to two thousand years later — formulated as integral calculus.

Continue reading ‘Archimedes and the Volume of a Sphere’### Airport Baggage Screening with X-Ray Tomography

Published November 21, 2019 Irish Times Leave a CommentTags: Algorithms

When you check in your baggage for a flight, it must be screened before it is allowed on the plane. Baggage screening detects threats within luggage and personal belongings by x-ray analysis as they pass along a conveyor belt. Hold-baggage and passenger screening systems are capable of detecting contraband materials, narcotics, explosives and weapons [TM175 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘Airport Baggage Screening with X-Ray Tomography’

### Elliptic Trigonometry: Fun with “sun”, “cun” and “dun”

Published November 14, 2019 Occasional Leave a CommentTags: Analysis, Trigonometry

** Introduction **

The circular functions arise from ratios of lengths in a circle. In a similar manner, the elliptic functions can be defined by means of ratios of lengths in an ellipse. Many of the key properties of the elliptic functions follow from simple geometric properties of the ellipse.

Originally, Carl Gustav Jacobi defined the elliptic functions , , using the integral

He called the *amplitude* and wrote . It can be difficult to understand what motivated his definitions. We will define the elliptic functions , , in a more intuitive way, as simple ratios associated with an ellipse.

Continue reading ‘Elliptic Trigonometry: Fun with “sun”, “cun” and “dun”’

### The Vastness of Mathematics: No One Knows it All

Published November 7, 2019 Irish Times Leave a CommentTags: Education, History

No one person can have mastery of the entirety of mathematics. The subject has become so vast that the best that can be achieved is a general understanding and appreciation of the main branches together with expertise in one or two areas [TM174 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘The Vastness of Mathematics: No One Knows it All’

### An Attractive Spinning Toy: the Phi-TOP

Published October 31, 2019 Occasional Leave a CommentTags: Mechanics

It is fascinating to watch a top spinning. It seems to defy gravity: while it would topple over if not spinning, it remains in a vertical position as long as it is spinning rapidly.

There are many variations on the simple top. The gyroscope has played a vital role in navigation and in guidance and control systems. Many similar rotating toys have been devised. These include rattlebacks, tippe-tops and the Euler disk. The figure below shows four examples.

### Some Fundamental Theorems of Maths

Published October 24, 2019 Occasional Leave a CommentTags: Algebra, Analysis, Geometry

*Every branch of mathematics has key results that are so
important that they are dubbed fundamental theorems.*

The customary view of mathematical research is that of establishing the truth of propositions or theorems by rigorous deduction from axioms and definitions. Mathematics is founded upon axioms, basic assumptions that are taken as true. Logical reasoning is then used to deduce the consequences of those axioms with each major result designated as a theorem.

As each new theorem is proved, it provides a basis for the establishment of further results. The most important and fruitful theorem in each area of maths is often named as the *fundamental theorem* of that area. Thus, we have the fundamental theorems of arithmetic, algebra and so on. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus.

### Maths and Poetry: Beauty is the Link

Published October 17, 2019 Irish Times Leave a CommentTags: Hamilton

Mathematicians are not renowned for their ability to reach the deepest recesses of the human soul. This talent is usually associated with great artists and musicians, and a good poet can move us profoundly with a few well-chosen words [TM173 or search for “thatsmaths” at irishtimes.com].

### The Wonders of Complex Analysis

Published October 10, 2019 Occasional Leave a CommentTags: Analysis

If you love mathematics and have never studied complex function theory, then you are missing something wonderful. It is one of the most beautiful branches of maths, with many amazing results. Don’t be put off by the name: complex does not mean complicated. With elementary calculus and a basic knowledge of imaginary numbers, a whole world of wonder is within your grasp.

In the early nineteenth century, Augustin-Louis Cauchy (1789–1857) constructed the foundations of what became a major new branch of mathematics, the theory of functions of a complex variable.

### Emergence of Complex Behaviour from Simple Roots

Published October 3, 2019 Irish Times Leave a CommentTags: Algorithms, biology, Computer Science

It is exhilarating to watch a large flock of birds swarming in ever-changing patterns. Swarming is an emergent behaviour, resulting from a set of simple rules followed by each individual animal, bird or fish, without any centralized control or leadership.

Continue reading ‘Emergence of Complex Behaviour from Simple Roots’

Given a function of a real variable, we often have to find the values of for which the function is zero. A simple iterative method was devised by Isaac Newton and refined by Joseph Raphson. It is known either as Newton’s method or as the Newton-Raphson method. It usually produces highly accurate approximations to the roots of the equation .

### George Salmon, Mathematician & Theologian

Published September 19, 2019 Irish Times Leave a CommentTags: History

As you pass through the main entrance of Trinity College, the iconic campanile stands before you, flanked, in pleasing symmetry, by two life-size statues. On the right, on a granite plinth is the historian and essayist William Lecky. On the left, George Salmon (1819–1904) sits on a limestone platform.

Salmon was a distinguished mathematician and theologian and Provost of Trinity College. For decades, the two scholars have gazed down upon multitudes of students crossing Front Square. The life-size statue of Salmon, carved from Galway marble by the celebrated Irish sculptor John Hughes, was erected in 1911. Next Wednesday will be the 200^{th} anniversary of Salmon’s birth [TM171 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘George Salmon, Mathematician & Theologian’

### Spiralling Primes

Published September 12, 2019 Occasional Leave a CommentTags: Number Theory, Recreational Maths

The prime numbers have presented mathematicians with some of their most challenging problems. They continue to play a central role in number theory, and many key questions remain unsolved.

** Order and Chaos **

The primes have many intriguing properties. In his article “The first 50 million prime numbers”, Don Zagier noted two contradictory characteristics of the distribution of prime numbers. The first is the erratic and seemingly chaotic way in which the primes “grow like weeds among the natural numbers”. The second is that, when they are viewed in the large, they exhibit “stunning regularity”.

### An English Lady with a Certain Taste

Published September 5, 2019 Irish Times Leave a CommentTags: Statistics

One hundred years ago, an English lady, Dr Muriel Bristol, amazed some leading statisticians by proving that she could determine by taste the order in which the constituents are poured in a cup of tea. One of the statisticians was Ronald Fisher. The other was William Roach, who was to marry Dr Bristol shortly afterwards.

Many decisions in medicine, economics and other fields depend on carefully designed experiments. For example, before a new treatment is proposed, its efficacy must be established by a series of rigorous tests. Everyone is different, and no one course of treatment is necessarily best in all cases. Statistical evaluation of data is an essential part of the evaluation of new drugs [TM170 or search for “thatsmaths” at irishtimes.com].

###
*ToplDice* is Markovian

Published August 29, 2019
Occasional
Leave a Comment
Tags: Algorithms, Games, Statistics

Many problems in probability are solved by assuming independence of separate experiments. When we toss a coin, it is assumed that the outcome does not depend on the results of previous tosses. Similarly, each cast of a die is assumed to be independent of previous casts.

However, this assumption is frequently invalid. Draw a card from a shuffled deck and reveal it. Then place it on the bottom and draw another card. *The odds have changed*: if the first card was an ace, the chances that the second is also an ace have diminished.

### The curious behaviour of the Wilberforce Spring.

Published August 22, 2019 Occasional Leave a CommentTags: Mechanics, Physics

The Wilberforce Spring (often called the Wilberforce pendulum) is a simple mechanical device that illustrates the conversion of energy between two forms. It comprises a weight attached to a spring that is free to *stretch* up and down and to *twist* about its axis.

However, due to a mechanical coupling between the stretching and torsion, there is a link between stretching and twisting motions, and the energy is gradually converted from vertical oscillations to axial motion about the vertical. This motion is, in turn, converted back to vertical oscillations, and the cycle continues indefinitely, in the absence of damping.

The conversion is dependent upon a resonance condition being satisfied: the frequencies of the stretching and twisting modes must be very close in value. This is usually achieved by having small adjustable weights mounted on the pendulum.

There are several videos of a Wilberforce springs in action on YouTube. For example, see here.

Continue reading ‘The curious behaviour of the Wilberforce Spring.’

### The Brief and Tragic Life of Évariste Galois

Published August 15, 2019 Irish Times Leave a CommentTags: Algebra, Group Theory, History

On the morning of 30 May 1832 a young man stood twenty-five paces from his friend. Both men fired, but only one pistol was loaded. Évariste Galois, a twenty year old mathematical genius, fell to the ground. The cause of Galois’s death is veiled in mystery and speculation. Whether both men loved the same woman or had irreconcilable political differences is unclear. But Galois was abandoned, mortally wounded, on the duelling ground at Gentilly, just south of Paris. By noon the next day he was dead [TM169 or search for “Galois” at irishtimes.com].

Continue reading ‘The Brief and Tragic Life of Évariste Galois’

### Stokes’s 200th Birthday Anniversary

Published August 8, 2019 Irish Times Leave a CommentTags: Fluid Dynamics, History, Physics

Next Tuesday, the 30th of August, is the 200th anniversary of the birth of George Gabriel Stokes. This extended blog post is to mark that occasion. See also an article in The Irish Times.

### Algorithms: Recipes for Success

Published August 1, 2019 Irish Times Leave a CommentTags: Algorithms, Computer Science

The impact of computing on society is ever-increasing. Web-based commerce continues to grow and artificial intelligence now pervades our lives. To make wise choices, we need to understand how computers operate and how we can deploy them most constructively. Listen to any computer scientist and soon you will hear the word “algorithm” [TM168 or search for “thatsmaths” at irishtimes.com].

In (mathematical) billiards, the ball travels in a straight line between impacts with the boundary, when it changes suddenly and discontinuously We can approximate the hard-edged, flat-bedded billiard by a smooth sloping surface, that we call a “ballyard”. Then the continuous dynamics of the ballyard approach the motions on a billiard.

### Learning Maths without even Trying

Published July 18, 2019 Irish Times Leave a CommentTags: Education, Ireland, Recreational Maths

Children have an almost limitless capacity to absorb knowledge if it is presented in an appealing and entertaining manner. Mathematics can be daunting, but it is possible to convey key ideas visually so that they are instantly accessible. Visiting Explorium recently, I saw such a visual display demonstrating the theorem of Pythagoras, which, according to Jacob Bronowski, “remains the most important single theorem in the whole of mathematics” [TM167 or search for “thatsmaths” at irishtimes.com].

We will describe some generic behaviour patterns of dynamical systems. In many systems, the orbits exhibit characteristic patterns called boxes and loops. We first describe orbits for a simple pendulum, and then look at some systems in higher dimensions.

### What did the Romans ever do for Maths?

Published July 4, 2019 Irish Times 1 CommentTags: Arithmetic, History

The ancient Romans developed many new techniques for engineering and architecture. The citizens of Rome enjoyed fountains, public baths, central heating, underground sewage systems and public toilets. All right, but apart from sanitation, medicine, education, irrigation, roads and aqueducts, what did the Romans ever do for maths? [TM166 or search for “thatsmaths” at irishtimes.com].

### Cumbersome Calculations in Ancient Rome

Published June 27, 2019 Occasional 1 CommentTags: Algorithms, History

“Typus Arithmeticae” is a woodcut from the book *Margarita Philosophica* by Gregor Reisch of Freiburg, published in 1503. In the centre of the figure stands Arithmetica, the muse of mathematics. She is watching a competition between the Roman mathematician Boethius and the great Pythagoras. Boethius is crunching out a calculation using Hindu-Arabic numerals, while Pythagoras uses a counting board or abacus (*tabula*) and – presumably – a less convenient number system. Arithmetica is looking with favour towards Boethius. He smiles smugly while Pythagoras is looking decidedly glum.

The figure aims to show the superiority of the Hindu-Arabic number system over the older Greek and Roman number systems. Of course, it is completely anachronistic: Pythagoras flourished around 500 BC and Boethius around AD 500, while the Hindu-Arabic numbers did not arrive in Europe until after AD 1200.

### Simple Curves that Perplex Mathematicians and Inspire Artists

Published June 20, 2019 Irish Times Leave a CommentTags: Algorithms, Topology

The preoccupations of mathematicians can seem curious and strange to *normal* people. They sometimes expend great energy proving results that appear glaringly obvious. One such result is called the **Jordan** **Curve** **Theorem**. We all know that a circle has an inside and an outside, and that this property also holds for a much larger collection of closed curves [TM165 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘Simple Curves that Perplex Mathematicians and Inspire Artists’