Archive for the 'Occasional' Category

Bernard Bolzano, a Voice Crying in the Wilderness


Bernard Bolzano (1781-1848)

Bernard Bolzano, born in Prague in 1781, was a Bohemian mathematician with Italian origins. Bolzano made several profound advances in mathematics that were not well publicized. As a result, his mathematical work was overlooked, often for many decades after his death. For example, his construction of a function that is continuous on an interval but nowhere differentiable, did not become known. Thus, the credit still goes to Karl Weierstrass, who found such a function about 30 years later. Boyer and Merzbach described Bolzano as “a voice crying in the wilderness,” since so many of his results had to be rediscovered by other workers.

Continue reading ‘Bernard Bolzano, a Voice Crying in the Wilderness’

Symplectic Geometry

Albert-EinsteinFor many decades, a search has been under way to find a theory of everything, that accounts for all the fundamental physical forces, including gravity. The dictum “physics is geometry” is a guiding principle of modern theoretical physics. Einstein’s General Theory of Relativity, which emerged just one hundred years ago, is a crowning example of this synergy. He showed how matter distorts the geometry of space and this geometry determines the motion of matter. The central idea is encapsulated in an epigram of John A Wheeler:

\displaystyle \mbox{Matter tells space how to curve. Space tells matter how to move.}

Continue reading ‘Symplectic Geometry’

Chase and Escape: Pursuit Problems

Jolly-RogerFrom cheetahs chasing gazelles, through coastguards saving shipwrecked sailors, to missiles launched at enemy aircraft, strategies of pursuit and evasion play a role in many areas of life (and death). From pre-historic times we have been solving such pursuit problems. The survival of our early ancestors depended on their ability to acquire food. This involved chasing and killing animals, and success depended on an understanding of relative speeds and optimal pursuit paths.

Continue reading ‘Chase and Escape: Pursuit Problems’

Bouncing Billiard Balls Produce Pi

There are many ways of evaluating {\pi}, the ratio of the circumference of a circle to its diameter. We review several historical methods and describe a recently-discovered and completely original and ingenious method.


Continue reading ‘Bouncing Billiard Balls Produce Pi’

K3 implies the Inverse Square Law.


Johannes Kepler. Stamp issued by the German Democratic Republic in 1971, the 400th anniversary of Kepler’s birth.

Kepler formulated three remarkable laws of planetary motion. He deduced them directly from observations of the planets, most particularly of the motion of Mars. The first two laws appeared in 1609 in Kepler’s Astronomia Nova. The first law (K1) describes the orbit of a planet as an ellipse with the Sun at one focus. The second law (K2) states that the radial line from Sun to planet sweeps out equal areas in equal times; we now describe this in terms of conservation of angular momentum.

The third law (K3), which appeared in 1619 in Kepler’s Harmonices Mundi, is of a different character. It does not relate to a single planet, but connects the motions of different planets. It states that the squares of the orbital periods vary in proportion to the cubes of the semi-major axes. For circular orbits, the period squared is proportional to the radius cubed.

Continue reading ‘K3 implies the Inverse Square Law.’

Massive Collaboration in Maths: the Polymath Project

Sometimes proofs of long-outstanding problems emerge without prior warning. In the 1990s, Andrew Wiles proved Fermat’s Last Theorem. More recently, Yitang Zhang announced a key result on bounded gaps in the prime numbers. Both Wiles and Zhang had worked for years in isolation, keeping abreast of developments but carrying out intensive research programs unaided by others. This ensured that they did not have to share the glory of discovery, but it may not be an optimal way of making progress in mathematics.



Timothy Gowers in 2012 [image Wikimedia Commons].

Is massively collaborative mathematics possible? This was the question posed in a 2009 blog post by Timothy Gowers, a Cambridge mathematician and Fields Medal winner. Gowers suggested completely new ways in which mathematicians might work together to accelerate progress in solving some really difficult problems in maths. He envisaged a forum for the online discussion of problems. Anybody interested could contribute to the discussion. Contributions would be short, and could include false routes and failures; these are normally hidden from view so that different workers repeat the same mistakes.

Continue reading ‘Massive Collaboration in Maths: the Polymath Project’

A Chirping Elliptic Rocker

Sitting at the breakfast table, I noticed that a small cereal bowl placed within another larger one was rocking, and that the period became shorter as the amplitude died down. What was going on? 


A small bowl with its handles resting on the rim of a larger bowl. The handles are approximately elliptical in cross-section.

Continue reading ‘A Chirping Elliptic Rocker’

Last 50 Posts