Archive for the 'Occasional' Category

Folding Maps: A Simple but Unsolved Problem

Paper-folding is a recurring theme in mathematics. The art of origami is much-loved by many who also enjoy recreational maths. One particular folding problem is remarkably easy to state, but the solution remains elusive:

Given a map with M × N panels, how many different ways can it be folded?

Each panel is considered to be distinct, so two foldings are equivalent only when they have the same vertical sequence of the L = M × N layers.

Continue reading ‘Folding Maps: A Simple but Unsolved Problem’

Our Dearest Problems

A Colloquium on Recreational Mathematics took place in Lisbon this week. The meeting, RMC-VI (G4GEurope), a great success, was organised by the Ludus Association, with support from several other agencies: MUHNAC, ULisboa, CMAF-IO, CIUHCT, CEMAPRE, and FCT. It was the third meeting integrated in the Gathering for Gardner movement, which celebrates the great populariser of maths, Martin Gardner. For more information about the meeting, see http://ludicum.org/ev/rm/19 .

Continue reading ‘Our Dearest Problems’

From a Wide Wake to the Width of the World

The finite angular width of a ship’s turbulent wake at the horizon enables the Earth’s radius to be estimated.

By ignoring evidence, Flat-Earthers remain secure in their delusions. The rest of us benefit greatly from accurate geodesy. Satellite communications, GPS navigation, large-scale surveying and cartography all require precise knowledge of the shape and form of the Earth and a precise value of its radius.


Continue reading ‘From a Wide Wake to the Width of the World’

Really, 0.999999… is equal to 1. Surreally, this is not so!

The value of the recurring decimal 0.999999 … is a popular topic of conversation amongst amateur mathematicians of various levels of knowledge and expertise. Some of the discussions on the web are of little value or interest, but the topic touches on several subtle and deep aspects of number theory.

999999

[Image Wikimedia Commons]

Continue reading ‘Really, 0.999999… is equal to 1. Surreally, this is not so!’

Gaussian Curvature: the Theorema Egregium

ShapeOfUniverse

Surfaces of positive curvature (top), negative curvature (middle) and vanishing curvature (bottom) [image credit: NASA].

One of greatest achievements of Carl Friedrich Gauss was a theorem so startling that he gave it the name Theorema Egregium or outstanding theorem. In 1828 he published his “Disquisitiones generales circa superficies curvas”, or General investigation of curved surfaces. Gauss defined a quantity that measures the curvature of a two-dimensional surface. He was inspired by his work on geodesy, surveying and map-making, which involved taking measurements on the surface of the Earth. The total curvature — or Gaussian curvature — depends only on measurements within the surface and Gauss showed that its value is independent of the coordinate system used. This is his Theorema Egregium. The Gaussian curvature {K} characterizes the intrinsic geometry of a surface.

Continue reading ‘Gaussian Curvature: the Theorema Egregium

The 3 : 2 Resonance between Neptune and Pluto

For every two orbits of Pluto around the Sun, Neptune completes three orbits. This 3 : 2 resonance has profound consequences for the stability of the orbit of Pluto.

Nep-Plu-Orbits-AB

Unstable (left) and stable (right) orbital configurations.

Continue reading ‘The 3 : 2 Resonance between Neptune and Pluto’

The Two Envelopes Fallacy

During his Hamilton lecture in Dublin recently, Fields medalist Martin Hairer made a passing mention of the “Two Envelopes Paradox”. This is a well-known problem in probability theory that has led to much misunderstanding. It was originally developed in 1912 by the leading German number theorist Edmund Landau (see Gorroochurn, 2012). It is frequently discussed on the web, with much misunderstanding and confusion. I will try to avoid adding to that.

Two-Envelopes

Continue reading ‘The Two Envelopes Fallacy’


Last 50 Posts

Categories