We wrote last week on *modular arithmetic*, the arithmetic of remainders. Here we will examine a few other aspects of this huge subject. Modular arithmetic was advanced by Gauss in his *Disquisitiones Arithmeticae*. In this system, number wrap around when they reach a point known as the modulus. Numbers that differ by a multiple of the modulus are called congruent. Thus 4, 11 and 18 are all congruent modulo 7.

## Archive for the 'Occasional' Category

### More on Moduli

Published November 6, 2017 Occasional Leave a CommentTags: Arithmetic, Number Theory

Sometimes the “obvious” answer to a mathematical problem is not the correct one. The case of Malfatti’s circles is an example of this. In an equilateral triangle of unit side length, we must draw three non-overlapping circles such that the total area of the circles is maximal.

The solution seems obvious: draw three identical circles, each one tangent to two sides and to the other two circles (above figure, left). This is certainly the most symmetric arrangement possible. However, it turns out not to be the optimal solution. There is another arrangement (above figure, right) for which the three circles have greater total area.

### Pedro Nunes and Solar Retrogression

Published October 12, 2017 Occasional Leave a CommentTags: Astronomy, Time measurement

In northern latitudes we are used to the Sun rising in the East, following a smooth and even course through the southern sky and setting in the West. The idea that the compass bearing of the Sun might reverse seems fanciful. But in 1537 Portuguese mathematician Pedro Nunes showed that the shadow cast by the gnomon of a sun dial can move backwards.

Nunes’ prediction was counter-intuitive. It came long before Newton, Galileo and Kepler, and Copernicus’ heliocentric theory had not yet been published. The retrogression was a remarkable example of the power of mathematics to predict physical behaviour.

We are all familiar with the Möbius strip or Möbius band. This topologically intriguing object with one side and one edge has fascinated children of all ages since it was discovered independently by August Möbius and Johann Listing in the same year, 1858.

Amongst the many joys of mathematics are the beautiful patterns that appear unexpectedly from time to time. In 1951, Alfred Moessner discovered a delightful and ingenious way of generating sequences of powers of natural numbers. It is surprisingly simple and offers great opportunities for development and generalization.

It is well-known that the sum of odd numbers yields a perfect square:

1 + 3 + 5 + … + (2*n* – 1) = *n *^{2}

This is easily demonstrated in a geometric way. We start with a unit square, and repeatedly add an additional row and column on the “east” and “north” sides and a unit square at the “north-east” corner. This amounts to adding the next odd number and, at each stage, a new square is produced.

### Drawing Multi-focal Ellipses: The Gardener’s Method

Published August 31, 2017 Occasional Leave a CommentTags: Algorithms, Geometry

**Common-or-Garden Ellipses**

In an earlier post we saw how a gardener may set out oval flower-beds using a well-known property of ellipses: the sum of the distances from any point on the ellipse to the two foci is always the same value, , the length of the major axis. The gardener puts down two stakes and loops a piece of rope around them. Using a stick, he pulls the loop taut, marking the points around a curve. This is illustrated here.

Continue reading ‘Drawing Multi-focal Ellipses: The Gardener’s Method’### Locating the HQ with Multi-focal Ellipses

Published August 24, 2017 Occasional Leave a CommentTags: Algorithms, Geometry

**Motivation**

Ireland has four provinces, the principal city in each being the provincial capital: Belfast, Cork, Dublin and Galway. The map here shows the location of these cities. Now imagine a company that needs to visit and to deliver goods frequently to all four cities. Where might they locate their HQ to minimize transport costs and travel times?

One possibility is to find the location with the smallest distance sum:

where is the position of the HQ and are the positions of the cities.

Continue reading ‘Locating the HQ with Multi-focal Ellipses’