Archive for February, 2020

Zhukovsky’s Airfoil

A simple transformation with remarkable properties was used by Nikolai Zhukovsky around 1910 to study the flow around aircraft wings. It is defined by

\displaystyle \omega = \textstyle{\frac{1}{2}}\displaystyle{\left(z +\frac{1}{z}\right)}

and is usually called the Joukowsky Map. We begin with a discussion of the theory of fluid flow in two dimensions. Readers familiar with 2D potential flow may skip to the section Joukowsky Airfoil.


Visualization of airflow around a Joukowsky airfoil. Image generated using code on this website.

Continue reading ‘Zhukovsky’s Airfoil’

How many numbers begin with a 1? More than 30%!

The irregular distribution of the first digits of numbers in data-bases provides a valuable tool for fraud detection. A remarkable rule that applies to many datasets was accidentally discovered by an American physicist, Frank Benford, who described his discovery in a 1938 paper, “The Law of Anomalous Numbers” [TM181 or search for “thatsmaths” at].


Continue reading ‘How many numbers begin with a 1? More than 30%!’

A Ring of Water Shows the Earth’s Spin

Around 1913, while still an undergraduate, American physicist Arthur Compton described an experiment to demonstrate the rotation of the Earth using a simple laboratory apparatus.


Continue reading ‘A Ring of Water Shows the Earth’s Spin’

Using Maths to Reduce Aircraft Noise

If you have ever tried to sleep under a flight-path near an airport, you will know how serious the problem of aircraft noise can be. Aircraft noise is amongst the loudest sounds produced by human activities. The noise is over a broad range of frequencies, extending well beyond the range of hearing. The problem of aviation noise has become more severe as aircraft engines have become more powerful  [TM180 or search for “thatsmaths” at].


Engine inlet of a CFM56-3 turbofan engine on a Boeing 737-400 [image Wikimedia Commons].

Continue reading ‘Using Maths to Reduce Aircraft Noise’

Last 50 Posts