Posts Tagged 'Group Theory'

The Brief and Tragic Life of Évariste Galois

On the morning of 30 May 1832 a young man stood twenty-five paces from his friend. Both men fired, but only one pistol was loaded. Évariste Galois, a twenty year old mathematical genius, fell to the ground. The cause of Galois’s death is veiled in mystery and speculation. Whether both men loved the same woman or had irreconcilable political differences is unclear. But Galois was abandoned, mortally wounded, on the duelling ground at Gentilly, just south of Paris. By noon the next day he was dead [TM169 or search for “Galois” at irishtimes.com].

Galois-Stamp

French postage stamp issued in 1984.

Continue reading ‘The Brief and Tragic Life of Évariste Galois’

Motifs: Molecules of Music

Motif: A short musical unit, usually just few notes, used again and again.  

A recurrent short phrase that is developed in the course of a composition.

A motif in music is a small group of notes encapsulating an idea or theme. It often contains the essence of the composition. For example, the opening four notes of Beethoven’s Fifth Symphony express a musical idea that is repeated throughout the symphony. 

Motif-LvanB-5

Continue reading ‘Motifs: Molecules of Music’

Sophus Lie

It is difficult to imagine modern mathematics without the concept of a Lie group.” (Ioan James, 2002).

Sophus-Lie

Sophus Lie (1842-1899)

Sophus Lie grew up in the town of Moss, south of Oslo. He was a powerful man, tall and strong with a booming voice and imposing presence. He was an accomplished sportsman, most notably in gymnastics. It was no hardship for Lie to walk the 60 km from Oslo to Moss at the weekend to visit his parents. At school, Lie was a good all-rounder, though his mathematics teacher, Ludvig Sylow, a pioneer of group theory, did not suspect his great potential or anticipate his remarkable achievements in that field.

Continue reading ‘Sophus Lie’

The Klein 4-Group

What is the common factor linking book-flips, solitaire, twelve-tone music and the solution of quartic equations?   Answer: {K_4}.

Symmetries of a Book — or a Brick

The four symmetric configurations of a book under 3D rotations.}

The four symmetric configurations of a book under 3D rotations.}

Continue reading ‘The Klein 4-Group’

The Langlands Program

An ambitious programme to unify disparate areas of mathematics was set out some fifty years ago by Robert Langlands of the Institute for Advanced Study in Princeton. The “Langlands Program” (LP) is a set of deep conjectures that attempt to build bridges between certain algebraic and analytical objects.

Canadian mathematician Robert Langlands, who formulated a series of far-reaching conjectures.

Canadian mathematician Robert Langlands, who formulated a series of far-reaching conjectures [image from Wikimedia Commons].

Continue reading ‘The Langlands Program’

Speed Cubing & Group Theory

The article in this week’s That’s Maths column in the Irish Times ( TM038 ) is about Rubik’s Cube and the Group Theory that underlies its solution.

Rubik's Cube, invented in 1974 by Hungarian professor of architecture Ernő Rubik.

Rubik’s Cube, invented in 1974 by Hungarian professor of architecture Ernő Rubik.

Continue reading ‘Speed Cubing & Group Theory’


Last 50 Posts

Categories