The Many Schools of Mathematical Thought

Mathematics is used widely, playing a central role in science and engineering and, increasingly, in the social and biological sciences. But users seldom consider the fundamental nature of mathematics. Many cannot improve on the vacuous definition: mathematics is what is done by mathematicians. We could try harder, with something like “mathematics is the language of … Continue reading The Many Schools of Mathematical Thought

The Axiom of Choice: Shoes & Socks and Non-constructive Proofs

Recall Euclid's proof that there is no limit to the list of prime numbers. One way to show this is that, by assuming that some number $latex {p}&fg=000000$ is the largest prime, we arrive at a contradiction. The idea is simple yet powerful. A Non-constructive Proof Suppose $latex {p}&fg=000000$ is prime and there are no … Continue reading The Axiom of Choice: Shoes & Socks and Non-constructive Proofs

Amusical Permutations and Unsettleable Problems

In a memorial tribute in the Notices of the American Mathematical Society (Ryba, et al, 2022), Dierk Schleicher wrote of how he convinced John Conway to publish a paper, ``On unsettleable arithmetical problems'', which included a discussion of the Amusical Permutations. This paper, which discusses arithmetical statements that are almost certainly true but likely unprovable, … Continue reading Amusical Permutations and Unsettleable Problems

Goldbach’s Conjecture and Goldbach’s Variation

Goldbach's Conjecture is one of the great unresolved problems of number theory. It simply states that every even natural number greater than two is the sum of two prime numbers. It is easily confirmed for even numbers of small magnitude. The conjecture first appeared in a letter dated 1742 from German mathematician Christian Goldbach to … Continue reading Goldbach’s Conjecture and Goldbach’s Variation

Hyperreals and Nonstandard Analysis

Following the invention of calculus, serious concerns persisted about the mathematical integrity of the method of infinitesimals. Leibniz made liberal use of infinitesimals, with great effect, but his reasoning was felt to lack rigour. The Irish bishop George Berkeley criticised the assumptions underlying calculus, and his objections were not properly addressed for several centuries. In … Continue reading Hyperreals and Nonstandard Analysis

Goldbach’s Conjecture: if it’s Unprovable, it must be True

The starting point for rigorous reasoning in maths is a system of axioms. An axiom is a statement that is assumed, without demonstration, to be true. The Greek mathematician Thales is credited with introducing the axiomatic method, in which each statement is deduced either from axioms or from previously proven statements, using the laws of … Continue reading Goldbach’s Conjecture: if it’s Unprovable, it must be True

Mathematics and the Nature of Physical Reality

Applied mathematics is the use of maths to address questions and solve problems outside maths itself. Counting money, designing rockets and vaccines, analysing internet traffic and predicting the weather all involve maths. But why does this work? Why is maths so successful in describing physical reality? How is it that the world can be understood … Continue reading Mathematics and the Nature of Physical Reality

Berry’s Paradox and Gödel’s Incompleteness Theorem

  A young librarian at the Bodleian Library in Oxford devised an intriguing paradox. He defined a number by means of a statement of the form THE SMALLEST NATURAL NUMBER THAT CANNOT BE DEFINED IN FEWER THAN TWENTY WORDS. This appears to indicate a specific positive integer, which we denote $latex {\mathcal{B}}&fg=000000$. But there is … Continue reading Berry’s Paradox and Gödel’s Incompleteness Theorem

The “Napoleon of Crime” and The Laws of Thought

A fascinating parallel between a brilliant mathematician and an arch-villain of crime fiction is drawn in a forthcoming book – New Light on George Boole – by Des MacHale and Yvonne Cohen. Professor James Moriarty, master criminal and nemesis of Sherlock Holmes, was described by the detective as “the Napoleon of crime”. The book presents … Continue reading The “Napoleon of Crime” and The Laws of Thought

“Dividends and Divisors Ever Diminishing”

Next Saturday is Bloomsday, the anniversary of the date on which the action of Ulysses took place. Mathematical themes occur occasionally throughout Ulysses, most notably in the penultimate episode, Ithaca, where the exchanges between Leopold Bloom and Stephen Dedalus frequently touch on weighty scientific matters. [Last week's ThatsMaths post] In Ithaca, the narrator takes every … Continue reading “Dividends and Divisors Ever Diminishing”

Peano Music

The links between mathematics and music are manifold. Mathematics can be set to music in a simple but surprising manner. For the award ceremony of the Gödel Medal in 2014, a musical interpretation of Gödel's incompleteness Theorems was written by Danish composer Niels Marthinsen. It encodes the basic axioms of number theory that form the … Continue reading Peano Music