The claim is often made that mathematical results are immutable. Once proven, they remain forever valid. But things are not so simple. There are problems at the very core of mathematics that cast a shadow of uncertainty. We can never be absolutely sure that the foundations of our subject are rock-solid [TM104 or search for “thatsmaths” at irishtimes.com].

The ancient Greeks put geometry on a firm footing. Euclid set down a list of axioms, or basic intuitive assumptions. Upon these, the entire edifice of Euclidean geometry is constructed. This axiomatic approach has been the model for mathematics ever since.