Finding a Horseshoe on the Beaches of Rio

In 1966, American mathematician Steve Smale was awarded a Fields Medal, a kind of Nobel Prize for mathematics. At a press conference at the International Congress of Mathematicians in Moscow, Smale attacked both US and Russian foreign policy. He was vehemently opposed to military aggression by the two super-powers. His pacifist position resulted in serious … Continue reading Finding a Horseshoe on the Beaches of Rio

The Logistic Map is hiding in the Mandelbrot Set

The logistic map is a simple second-order function on the unit interval: $latex \displaystyle x_{n+1} = r x_n (1-x_n) \,, &fg=000000$ where $latex {x_n}&fg=000000$ is the variable value at stage $latex {n}&fg=000000$ and $latex {r}&fg=000000$ is the ``growth rate''. For $latex {1 \le r \le 4}&fg=000000$, the map sends the unit interval [0,1] into itself. … Continue reading The Logistic Map is hiding in the Mandelbrot Set

The Logistic Map: a Simple Model with Rich Dynamics

Suppose the population of the world $latex {P(t)}&fg=000000$ is described by the equation $latex \displaystyle \frac{\mathrm{d}P} {\mathrm{d}t} = a P \,. &fg=000000$ Then $latex {P(t)}&fg=000000$ grows exponentially: $latex {P(t) = P_0 \exp(at)}&fg=000000$. This was the nightmare prediction of Thomas Robert Malthus. Taking a value $latex {a=0.02\ \mathrm{yr}^{-1}}&fg=000000$ for the growth rate, we get a doubling … Continue reading The Logistic Map: a Simple Model with Rich Dynamics