Gaussian Curvature: the Theorema Egregium

One of greatest achievements of Carl Friedrich Gauss was a theorem so startling that he gave it the name Theorema Egregium or outstanding theorem. In 1828 he published his ``Disquisitiones generales circa superficies curvas'', or General investigation of curved surfaces. Gauss defined a quantity that measures the curvature of a two-dimensional surface. He was inspired by … Continue reading Gaussian Curvature: the Theorema Egregium

Waring’s Problem & Lagrange’s Four-Square Theorem

$latex \displaystyle \mathrm{num}\ = \square+\square+\square+\square &fg=000000$ Introduction We are all familiar with the problem of splitting numbers into products of primes. This process is called factorisation. The problem of expressing numbers as sums of smaller numbers has also been studied in great depth. We call such a decomposition a partition. The Indian mathematician Ramanujan proved … Continue reading Waring’s Problem & Lagrange’s Four-Square Theorem

Hyperbolic Triangles and the Gauss-Bonnet Theorem

Poincaré's half-plane model for hyperbolic geometry comprises the upper half plane $latex {\mathbf{H} = \{(x,y): y>0\}}&fg=000000$ together with a metric $latex \displaystyle d s^2 = \frac { d x^2 + d y^2 } { y^2 } \,. &fg=000000$ It is remarkable that the entire structure of the space $latex {(\mathbf{H},ds)}&fg=000000$ follows from the metric. The … Continue reading Hyperbolic Triangles and the Gauss-Bonnet Theorem