Which is larger, e^pi or pi^e?

Which is greater, $latex {x^y}&fg=000000$ or $latex {y^x}&fg=000000$? Of course, it depends on the values of x and y. We might consider a particular case: Is $latex {e^\pi > \pi^e}&fg=000000$ or $latex {\pi^e > e^\pi}&fg=000000$? We assume that $latex {x}&fg=000000$ and $latex {y}&fg=000000$ are positive real numbers, and plot the function $latex \displaystyle z(x,y) = … Continue reading Which is larger, e^pi or pi^e?

Kepler’s Magnificent Mysterium Cosmographicum

  Johannes Kepler's amazing book, Mysterium Cosmographicum, was published in 1596. Kepler's central idea was that the distance relationships between the six planets (only six were known at that time) could be represented by six spheres separated by the five Platonic solids. For each of these regular polyhedra, there is an inner and an outer … Continue reading Kepler’s Magnificent Mysterium Cosmographicum

Heron’s Theorem: a Tool for Surveyors

Heron was one of the great Greek mathematicians of Alexandria, following in the tradition of Euclid, Archimedes, Eratosthenes and Apollonius. He lived in the first century, from about AD 10 to AD 70. His interests were in practical rather than theoretical mathematics and he wrote on measurement, mechanics and engineering. He devised a steam-powered device … Continue reading Heron’s Theorem: a Tool for Surveyors

Recreational Mathematics is Fun

We all love music, beautiful paintings and great literature without being trained musicians, talented artists or accomplished writers. It is the same with mathematics: we can enjoy the elegance of brilliant logical arguments and appreciate the beauty of mathematical structures and symmetries without being skilled creators of new theorems. [See TM097, or search for “thatsmaths” … Continue reading Recreational Mathematics is Fun

Can Mathematics Keep Us Secure?

The National Security Agency is the largest employer of mathematicians in America. Mathematics is a core discipline at NSA and mathematicians work on signals intelligence and information security (US citizenship is a requirement for employment). Why is NSA so interested in mathematics? [See TM096, or search for “thatsmaths” at irishtimes.com]. Many actions are easy to … Continue reading Can Mathematics Keep Us Secure?

Random Harmonic Series

We consider the convergence of the random harmonic series $latex \displaystyle R = \sum_{n=1}^{\infty}\frac{\sigma_{n}}{n} &fg=000000$ where $latex {\sigma_n\in\{-1,+1\}}&fg=000000$ is chosen randomly with probability $latex {1/2}&fg=000000$ of being either plus one or minus one. It follows from the Kolmogorov three-series theorem that the series is ``almost surely'' convergent. We are all familiar with the harmonic series … Continue reading Random Harmonic Series

Squircles

You can put a square peg in a round hole. Shapes between circles and squares have proved invaluable to engineers and have also found their way onto our dinner tables. A plate in the shape of a `squircle' is shown in this figure . The Equation of a Squircle An ellipse with centre at the origin … Continue reading Squircles

Lecture sans paroles: the factors of M67

In 1903 Frank Nelson Cole delivered an extraordinary lecture to the American Mathematical Society. For almost an hour he performed a calculation on the chalkboard without uttering a single word. When he finished, the audience broke into enthusiastic applause. Cole, an American mathematician born in 1861, was educated at Harvard. He lectured there and later … Continue reading Lecture sans paroles: the factors of M67

Bloom’s attempt to Square the Circle

The quadrature of the circle is one of the great problems posed by the ancient Greeks. This “squaring of the circle” was also an issue of particular interest to Leopold Bloom, the central character in James Joyce’s novel Ulysses, whom we celebrate today, Bloomsday, 16 June 2016 [see TM093, or search for “thatsmaths” at irishtimes.com]. The challenge … Continue reading Bloom’s attempt to Square the Circle

Mathematics Everywhere (in Blackrock Station)

Mathematics is everywhere. We are often unaware of it but, when we observe our environment consciously, we can see mathematical structures all around us. Recently, while waiting for a train in Blackrock Station (Co Dublin), I photographed various objects in and around the station. There were circles and squares all about, parallel planes and lines, hexagons … Continue reading Mathematics Everywhere (in Blackrock Station)

Modelling Rogue Waves

There are many eyewitness accounts by mariners of gigantic waves – almost vertical walls of water towering over ocean-going ships – that appear from nowhere and do great damage, sometimes destroying large vessels completely. Oceanographers, who have had no way of explaining these 'rogue waves', have in the past been dismissive of these reports [TM090, or search for … Continue reading Modelling Rogue Waves

Sigmoid Functions: Gudermannian and Gompertz Curves

The Gudermannian is named after Christoph Gudermann (1798--1852). The Gompertz function is named after Benjamin Gompertz (1779--1865). These are two amongst several sigmoid functions. Sigmoid functions find applications in many areas, including population dynamics, artificial neural networks, cartography, control systems and probability theory. We will look at several examples in this class of functions. Sigmoid … Continue reading Sigmoid Functions: Gudermannian and Gompertz Curves

The Imaginary Power Tower: Part I

The function defined by an `infinite tower' of exponents, $latex \displaystyle y(x) = {x^{x^{x^{.^{.^{.}}}}}} &fg=000000$ is called the Power Tower function. We consider the sequence of successive approximations to this function: $latex \displaystyle y_0 = 1 \qquad y_1 = x \qquad \dots \qquad y_{n+1} = x^{y_n} \,. &fg=000000$ As $latex {n\rightarrow\infty}&fg=000000$, the sequence $latex {\{y_n\}}&fg=000000$ converges for … Continue reading The Imaginary Power Tower: Part I

Peano Music

The links between mathematics and music are manifold. Mathematics can be set to music in a simple but surprising manner. For the award ceremony of the Gödel Medal in 2014, a musical interpretation of Gödel's incompleteness Theorems was written by Danish composer Niels Marthinsen. It encodes the basic axioms of number theory that form the … Continue reading Peano Music

The Abel Prize – The Nobel Prize for Mathematics

There is no Nobel Prize for mathematics, but there is a close equivalent: The prestigious Abel Medal is awarded every year for outstanding work in mathematics [TM086, or search for “thatsmaths” at irishtimes.com]. This years winner, or winners, will be announced soon. When Alfred Nobel's will appeared, the absence of any provision for a prize … Continue reading The Abel Prize – The Nobel Prize for Mathematics

The Mathematics of Voting

Selection of leaders by voting has a history reaching back to the Athenian democracy. Elections are essentially arithmetical exercises, but they involve more than simple counting, and have some subtle mathematical aspects [TM085, or search for “thatsmaths” at irishtimes.com]. The scientific study of voting and elections, which began around the time of the French Revolution, is called … Continue reading The Mathematics of Voting

Richardson’s Fantastic Forecast Factory

Modern weather forecasts are made by calculating solutions of the mathematical equations that express the fundamental physical principles governing the atmosphere  [TM083, or search for “thatsmaths” at irishtimes.com] The solutions are generated by complex simulation models with millions of lines of code, implemented on powerful computer equipment. The meteorologist uses the computer predictions to produce … Continue reading Richardson’s Fantastic Forecast Factory