The atmospheric temperature at a fixed spot may change in two ways. First, heat sources or sinks may increase or decrease the thermal energy; for example, sunshine may warm the air or radiation at night may cool it. Second, warmer or cooler air may be transported to the spot by the air flow in a process called advection. Normally, the two mechanisms act together, sometimes negating and sometimes reinforcing each other. What is true for temperature is also true for other quantities: pressure, density, humidity and even the flow velocity itself. This last effect may be described by saying that “the wind blows the wind” [TM132 or search for “thatsmaths” at irishtimes.com].

## Posts Tagged 'Algorithms'

### Staying Put or Going with the Flow

Published February 1, 2018 Irish Times Leave a CommentTags: Algorithms, Geophysics, Numerical Analysis

### Andrey Markov’s Brilliant Ideas are still a Driving Force

Published September 21, 2017 Irish Times Leave a CommentTags: Algorithms, Statistics

Imagine examining the first 20,000 letters of a book, counting frequencies and studying patterns. This is precisely what Andrey Markov did when he analyzed the text of Alexander Pushkin’s verse novel *Eugene Onegin*. This work comprises almost 400 stanzas of iambic tetrameter and is a classic of Russian literature. Markov studied the way vowels and consonants alternate and deduced the probabilities of a vowel being followed by a another vowel, by a consonant, and so on. He was applying a statistical model that he had developed in 1906 and that we now call a Markov Process or Markov chain. [TM123 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘Andrey Markov’s Brilliant Ideas are still a Driving Force’

### Drawing Multi-focal Ellipses: The Gardener’s Method

Published August 31, 2017 Occasional Leave a CommentTags: Algorithms, Geometry

**Common-or-Garden Ellipses**

In an earlier post we saw how a gardener may set out oval flower-beds using a well-known property of ellipses: the sum of the distances from any point on the ellipse to the two foci is always the same value, , the length of the major axis. The gardener puts down two stakes and loops a piece of rope around them. Using a stick, he pulls the loop taut, marking the points around a curve. This is illustrated here.

Continue reading ‘Drawing Multi-focal Ellipses: The Gardener’s Method’### Locating the HQ with Multi-focal Ellipses

Published August 24, 2017 Occasional Leave a CommentTags: Algorithms, Geometry

**Motivation**

Ireland has four provinces, the principal city in each being the provincial capital: Belfast, Cork, Dublin and Galway. The map here shows the location of these cities. Now imagine a company that needs to visit and to deliver goods frequently to all four cities. Where might they locate their HQ to minimize transport costs and travel times?

One possibility is to find the location with the smallest distance sum:

where is the position of the HQ and are the positions of the cities.

Continue reading ‘Locating the HQ with Multi-focal Ellipses’

### Fractal Complexity of Finnegans Wake

Published June 15, 2017 Irish Times Leave a CommentTags: Algorithms, Fractals

Tomorrow we celebrate Bloomsday, the day of action in *Ulysses*. Most of us regard Joyce’s singular book as a masterpiece, even if we have not read it. In contrast, *Finnegans Wake* is considered by some as a work of exceptional genius, by others as impenetrable bafflegab [See TM117 or search for “thatsmaths” at irishtimes.com].

### When Roughly Right is Good Enough

Published May 4, 2017 Irish Times Leave a CommentTags: Algorithms, Education

How high is Liberty Hall? How fast does human hair grow? How many A4 sheets of paper would cover Ireland? How many people in the world are talking on their mobile phones right now? These questions seem impossible to answer but, using basic knowledge and simple logic, we can make a good guess at the answers. For example, Liberty Hall has about 16 floors. With 4 metres per floor we get a height of 64 metres, close enough to the actual height. Problems of this nature are known as Fermi problems. [TM114 or search for “thatsmaths” at irishtimes.com].

### Voronoi Diagrams: Simple but Powerful

Published February 2, 2017 Irish Times 1 CommentTags: Algorithms, Geometry

We frequently need to find the nearest hospital, surgery or supermarket. A map divided into cells, each cell covering the region closest to a particular centre, can assist us in our quest. Such a map is called a Voronoi diagram, named for Georgy Voronoi, a mathematician born in Ukraine in 1868. He is remembered today mostly for his diagram, also known as a Voronoi tessellation, decomposition, or partition. [TM108 or search for “thatsmaths” at irishtimes.com].