Posts Tagged 'Algorithms'

Fractal Complexity of Finnegans Wake

Tomorrow we celebrate Bloomsday, the day of action in Ulysses. Most of us regard Joyce’s singular book as a masterpiece, even if we have not read it. In contrast, Finnegans Wake is considered by some as a work of exceptional genius, by others as impenetrable bafflegab [See TM117 or search for “thatsmaths” at irishtimes.com].

FW-Fractals-03-Squeezed.jpg

Wavelet transform of sentence length sequence in Ulysses. Note the structural change around sentence number 13,000. Image from Drozdz, et al (2016).

Continue reading ‘Fractal Complexity of Finnegans Wake’

When Roughly Right is Good Enough

LibertyHall-BUILDING-Thumb

How high is Liberty Hall? How fast does human hair grow? How many A4 sheets of paper would cover Ireland? How many people in the world are talking on their mobile phones right now? These questions seem impossible to answer but, using basic knowledge and simple logic, we can make a good guess at the answers. For example, Liberty Hall has about 16 floors. With 4 metres per floor we get a height of 64 metres, close enough to the actual height. Problems of this nature are known as Fermi problems. [TM114 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘When Roughly Right is Good Enough’

Voronoi Diagrams: Simple but Powerful

We frequently need to find the nearest hospital, surgery or supermarket. A map divided into cells, each cell covering the region closest to a particular centre, can assist us in our quest. Such a map is called a Voronoi diagram, named for Georgy Voronoi, a mathematician born in Ukraine in 1868. He is remembered today mostly for his diagram, also known as a Voronoi tessellation, decomposition, or partition. [TM108 or search for “thatsmaths” at irishtimes.com].

voronoi-diagram

Voronoi diagram drawn using the applet of Paul Chew (see Sources below).

Continue reading ‘Voronoi Diagrams: Simple but Powerful’

The Shaky Foundations of Mathematics

The claim is often made that mathematical results are immutable. Once proven, they remain forever valid. But things are not so simple. There are problems at the very core of mathematics that cast a shadow of uncertainty. We can never be absolutely sure that the foundations of our subject are rock-solid [TM104 or search for “thatsmaths” at irishtimes.com].

platoaristotlepythagoraseuclid

Left: Plato and Aristotle. Centre: Pythagoras. Right: Euclid [Raphael, The School of Athens]

The ancient Greeks put geometry on a firm footing. Euclid set down a list of axioms, or basic intuitive assumptions. Upon these, the entire edifice of Euclidean geometry is constructed. This axiomatic approach has been the model for mathematics ever since.

Continue reading ‘The Shaky Foundations of Mathematics’

A Toy Example of RSA Encryption

The RSA system has been presented many times, following the excellent expository article of Martin Gardner in the August 1977 issue of Scientific American. There is no need for yet another explanation of the system; the essentials are contained in the Wikipedia article RSA (cryptosystem), and in many other articles.

RSA-Older

L2R: Ron Rivest, Adi Shamir, Len Adleman (2003). Image from  https://www.usc.edu

The purpose of this note is to give an example of the method using numbers so small that the computations can easily be carried through by mental arithmetic or with a simple calculator.

Continue reading ‘A Toy Example of RSA Encryption’

Can Mathematics Keep Us Secure?

The National Security Agency is the largest employer of mathematicians in America. Mathematics is a core discipline at NSA and mathematicians work on signals intelligence and information security (US citizenship is a requirement for employment). Why is NSA so interested in mathematics? [See TM096, or search for “thatsmaths” at irishtimes.com].

NSA-Flag

Flag of the National Security Agency

Continue reading ‘Can Mathematics Keep Us Secure?’

Lateral Thinking in Mathematics

Many problems in mathematics that appear difficult to solve turn out to be remarkably simple when looked at from a new perspective. George Pólya, a Hungarian-born mathematician, wrote a popular book, How to Solve It, in which he discussed the benefits of attacking problems from a variety of angles [see TM094, or search for “thatsmaths” at irishtimes.com].

Continue reading ‘Lateral Thinking in Mathematics’


Last 50 Posts

Categories