The circle of fifths is a remarkably useful diagram for the analysis of music. It shows the twelve notes of the chromatic scale arranged in a circle, with notes that are harmonically related (like C and G) being close together and notes that are discordant (like C and C♯) more distant from each other. The … Continue reading Doughnuts and Tonnetze
Category: Occasional
Vanishing Hyperballs
We all know that the area of a disk --- the interior of a circle --- is $latex {\pi r^2}&fg=000000$ where $latex {r}&fg=000000$ is the radius. Some of us may also remember that the volume of a ball --- the interior of a sphere --- is $latex {\frac{4}{3}\pi r^3}&fg=000000$. The unit disk and ball have … Continue reading Vanishing Hyperballs
Disentangling Loops with an Ambient Isotopy
The surface in the left panel above has two linked loops. In the right hand panel, the loops are unlinked. Is it possible to continuously distort the left-hand surface so as to unlink the loops and produce the right-hand figure? This seems impossible, but intuition is not always reliable. Knot Theory A knot is an … Continue reading Disentangling Loops with an Ambient Isotopy
A Symbol for Global Circulation
The recycling symbol consisting of three bent arrows is found on bottles, cartons and packaging of all kinds. It originated in 1970 when the Chicago-based Container Corporation of America (CCA) held a competition for the design of a symbol suitable for printing on cartons, to encourage recycling and re-use of packaging materials. The competition for … Continue reading A Symbol for Global Circulation
More on Moduli
We wrote last week on modular arithmetic, the arithmetic of remainders. Here we will examine a few other aspects of this huge subject. Modular arithmetic was advanced by Gauss in his Disquisitiones Arithmeticae. In this system, number wrap around when they reach a point known as the modulus. Numbers that differ by a multiple of … Continue reading More on Moduli
Malfatti’s Circles
Sometimes the “obvious” answer to a mathematical problem is not the correct one. The case of Malfatti's circles is an example of this. In an equilateral triangle of unit side length, we must draw three non-overlapping circles such that the total area of the circles is maximal. The solution seems obvious: draw three identical circles, … Continue reading Malfatti’s Circles
Pedro Nunes and Solar Retrogression
In northern latitudes we are used to the Sun rising in the East, following a smooth and even course through the southern sky and setting in the West. The idea that the compass bearing of the Sun might reverse seems fanciful. But in 1537 Portuguese mathematician Pedro Nunes showed that the shadow cast by the … Continue reading Pedro Nunes and Solar Retrogression
Building Moebius Bands
We are all familiar with the Möbius strip or Möbius band. This topologically intriguing object with one side and one edge has fascinated children of all ages since it was discovered independently by August Möbius and Johann Listing in the same year, 1858. Building the Band It is a simple matter to make a Möbius … Continue reading Building Moebius Bands
Moessner’s Magical Method
Amongst the many joys of mathematics are the beautiful patterns that appear unexpectedly from time to time. In 1951, Alfred Moessner discovered a delightful and ingenious way of generating sequences of powers of natural numbers. It is surprisingly simple and offers great opportunities for development and generalization. It is well-known that the sum of odd … Continue reading Moessner’s Magical Method
Drawing Multi-focal Ellipses: The Gardener’s Method
Common-or-Garden Ellipses In an earlier post we saw how a gardener may set out oval flower-beds using a well-known property of ellipses: the sum of the distances from any point on the ellipse to the two foci is always the same value, $latex {2a}&fg=000000$, the length of the major axis. The gardener puts down two stakes … Continue reading Drawing Multi-focal Ellipses: The Gardener’s Method
Locating the HQ with Multi-focal Ellipses
Motivation Ireland has four provinces, the principal city in each being the provincial capital: Belfast, Cork, Dublin and Galway. The map here shows the location of these cities. Now imagine a company that needs to visit and to deliver goods frequently to all four cities. Where might they locate their HQ to minimize transport costs … Continue reading Locating the HQ with Multi-focal Ellipses
Saros 145/22: The Great American Eclipse
Next Monday, the shadow of the Moon will bring a two-minute spell of darkness as it sweeps across the United States along a path from Oregon to South Carolina. The eclipse is one of a series known as Saros 145. [TM121 or search for “thatsmaths” at irishtimes.com]. Dynamics of Eclipses If the Moon moved in … Continue reading Saros 145/22: The Great American Eclipse
Fractions of Fractions of Fractions
Numbers can be expressed in several different ways. We are familiar with whole numbers, fractions and decimals. But there is a wide range of other forms, and we examine one of them in this article. Every rational number $latex {x}&fg=000000$ can be expanded as a continued fraction: $latex \displaystyle x = a_0 + \cfrac{1}{ a_1 … Continue reading Fractions of Fractions of Fractions
Who First Proved that C / D is Constant?
Every circle has the property that the distance around it is just over three times the distance across. This has been “common knowledge” since the earliest times. But mathematicians do not trust common knowledge; they demand proof. Who was first to prove that all circles are similar, in the sense that the ratio of circumference … Continue reading Who First Proved that C / D is Constant?
Inertial Oscillations and Phugoid Flight
The English aviation pioneer Frederick Lanchester (1868--1946) introduced many important contributions to aerodynamics. He analysed the motion of an aircraft under various consitions of lift and drag. He introduced the term ``phugoid'' to describe aircraft motion in which the aircraft alternately climbs and descends, varying about straight and level flight. This is one of the … Continue reading Inertial Oscillations and Phugoid Flight
Patterns in Poetry, Music and Morse Code
Suppose we have to ascent a flight of stairs and can take only one or two steps at a time. How many different patterns of ascent are there? We start with the simplest cases. With one step there is only one way; with two, there are two: take two single steps or one double step. … Continue reading Patterns in Poetry, Music and Morse Code
The Beer Mat Game
Alice and Bob, are enjoying a drink together. Sitting in a bar-room, they take turns placing beer mats on the table. The only rules of the game are that the mats must not overlap or overhang the edge of the table. The winner is the player who puts down the final mat. Is there a … Continue reading The Beer Mat Game
A Remarkable Pair of Sequences
The terms of the two integer sequences below are equal for all $latex {n}&fg=000000$ such that $latex {1<n<777{,}451{,}915{,}729{,}368}&fg=000000$, but equality is violated for this enormous value and, intermittently, for larger values of $latex {n}&fg=000000$. Hypercube Tic-Tac-Toe The simple game of tic-tac-toe, or noughts and crosses, has been generalized in several ways. The number of cells in … Continue reading A Remarkable Pair of Sequences
Wavelets: Mathematical Microscopes
In the last post, we saw how Yves Meyer won the Abel Prize for his work with wavelets. Wavelets make it easy to analyse, compress and transmit information of all sorts, to eliminate noise and to perform numerical calculations. Let us take a look at how they came to be invented. Fourier's Marvellous Idea. In … Continue reading Wavelets: Mathematical Microscopes
Hearing Harmony, Seeing Symmetry
Musical notes that are simply related to each other have a pleasing effect when sounded together. Each tone has a characteristic rate of oscillation, or frequency. For example, Middle C on the piano oscillates 264 times per second or has a frequency of 264 Hz (Hertz). If the frequencies of two notes have a ratio … Continue reading Hearing Harmony, Seeing Symmetry
A Geometric Sieve for the Prime Numbers
In the time before computers (BC) various ingenious devices were invented for aiding the extensive calculations required in astronomy, navigation and commerce. In addition to calculators and logarithms, several nomograms were devised for specific applications, for example in meteorology and surveying. A Nomogram for Multiplication The graph of a parabola $latex {y=x^2}&fg=000000$ can be used … Continue reading A Geometric Sieve for the Prime Numbers
Torricelli’s Trumpet & the Painter’s Paradox
Evangelista Torricelli, a student of Galileo, is remembered as the inventor of the barometer. He was also a talented mathematician and he discovered the remarkable properties of a simple geometric surface, now often called Torricelli's Trumpet. It is the surface generated when the curve $latex {y=1/x}&fg=000000$ for $latex {x\ge1}&fg=000000$ is rotated in 3-space … Continue reading Torricelli’s Trumpet & the Painter’s Paradox
Treize: A Card-Matching Puzzle
Probability theory is full of surprises. Possibly the best-known paradoxical results are the Monty Hall Problem and the two-envelope problem, but there are many others. Here we consider a simple problem using playing cards, first analysed by Pierre Raymond de Montmort (1678--1719). Montmort's Problem Take two piles of cards faced down, one with the 13 … Continue reading Treize: A Card-Matching Puzzle
Numerical Coincidences
A numerical coincidence is an equality or near-equality between different mathematical quantities which has no known theoretical explanation. Sometimes such equalities remain mysterious and intriguing, and sometimes theory advances to the point where they can be explained and are no longer regarded as surprising. Simple Examples A simple example is the near-equality between 2 cubed … Continue reading Numerical Coincidences
Brun’s Constant and the Pentium Bug
Euclid showed by a deliciously simple argument that the number of primes is infinite. In a completely different manner, Euler confirmed the same result. Euler's conclusion followed from his demonstration that the sum of the reciprocals of the primes diverges: $latex \displaystyle \sum_{p\in\mathbb{P}} \frac{1}{p} = \infty &fg=000000$ Obviously, this could not happen if there were … Continue reading Brun’s Constant and the Pentium Bug
Topology in the Oval Office
Imagine a room – the Oval Office for example – that has three electrical appliances: • An air-conditioner ( a ) with an American plug socket ( A ), • A boiler ( b ) with a British plug socket ( B ), • A coffee-maker ( c ) with a Continental plug socket ( … Continue reading Topology in the Oval Office
Metallic Means
Everyone knows about the golden mean. It must be one of the most written-about numbers, certainly in recreational mathematics. It is usually denoted by $latex {\phi}&fg=000000$ and is the positive root of the quadratic equation $latex \displaystyle x^2 - x - 1 = 0 \ \ \ \ \ (1)&fg=000000$ with the value $latex {\phi … Continue reading Metallic Means
The Beginning of Modern Mathematics
The late fifteenth century was an exciting time in Europe. Western civilization woke with a start after the slumbers of the medieval age. Johannes Gutenberg's printing press arrived in 1450 and changed everything. Universities in Bologna, Oxford, Salamanca, Paris and elsewhere began to flourish. Leonardo da Vinci was in his prime and Christopher Columbus was … Continue reading The Beginning of Modern Mathematics
On Knots and Links
The picture below is of a sculpture piece called Intuition, which stands in front of the Isaac Newton Institute (INI) in Cambridge. It is in the form of the Borromean Rings, a set of three interlocked rings, no two of which encircle each other. Knot Theory Knot theory is an active research area today. In … Continue reading On Knots and Links
Unsolved: the Square Peg Problem
The idiom “square peg in a round hole” expresses a mismatch or misfit, often referring to somebody in the wrong profession. It may also indicate a difficult or impossible task but, of course, it is quite simple to fit a square peg in a round hole, hammering it in until the corners are tight against … Continue reading Unsolved: the Square Peg Problem
Twenty Heads in Succession: How Long will we Wait?
If three flips of a coin produce three heads, there is no surprise. But if 20 successive heads show up, you should be suspicious: the chances of this are less than one in a a million, so it is more likely than not that the coin is unbalanced. Waiting Time for a Single Head On average, … Continue reading Twenty Heads in Succession: How Long will we Wait?
Raphael Bombelli’s Psychedelic Leap
The story of how Italian Renaissance mathematicians solved cubic equations has elements of skullduggery and intrigue. The method originally found by Scipione del Ferro and independently by Tartaglia, was published by Girolamo Cardano in 1545 in his book Ars Magna. The method, often called Cardano's method, gives the solution of a depressed cubic equation t3 … Continue reading Raphael Bombelli’s Psychedelic Leap
Taylor Expansions from India
The English mathematician Brook Taylor (1685-1731) introduced the calculus of finite differences in his Methodus Incrementorum Directa et Inversa, published in 1715. This work contained the famous formula known today as Taylor's formula. In 1772, Lagrange described it as ``the main foundation of differential calculus'' (Wikipedia: Brook Taylor). Taylor also wrote a treatise on … Continue reading Taylor Expansions from India
Which is larger, e^pi or pi^e?
Which is greater, $latex {x^y}&fg=000000$ or $latex {y^x}&fg=000000$? Of course, it depends on the values of x and y. We might consider a particular case: Is $latex {e^\pi > \pi^e}&fg=000000$ or $latex {\pi^e > e^\pi}&fg=000000$? We assume that $latex {x}&fg=000000$ and $latex {y}&fg=000000$ are positive real numbers, and plot the function $latex \displaystyle z(x,y) = … Continue reading Which is larger, e^pi or pi^e?
That’s Maths Book Published
A book of mathematical articles, That's Maths, has just been published. The collection of 100 articles includes pieces that have appeared in The Irish Times over the past few years, blog posts from this website and a number of articles that have not appeared before. The book has been published by Gill Books and copies … Continue reading That’s Maths Book Published
Kepler’s Magnificent Mysterium Cosmographicum
Johannes Kepler's amazing book, Mysterium Cosmographicum, was published in 1596. Kepler's central idea was that the distance relationships between the six planets (only six were known at that time) could be represented by six spheres separated by the five Platonic solids. For each of these regular polyhedra, there is an inner and an outer … Continue reading Kepler’s Magnificent Mysterium Cosmographicum
Negative Number Names
The counting numbers that we learn as children are so familiar that using them is second nature. They bear the appropriate name natural numbers. From then on, names of numbers become less and less apposite. The integers include all whole numbers, both negative and positive. We are heading into difficulty: the term negative is so … Continue reading Negative Number Names
Venn Again’s Awake
We wrote about the basic properties of Venn diagrams in an earlier post. Now we take a deeper look. John Venn, a logician and philosopher, born in Hull, Yorkshire in 1834, introduced the diagrams in a paper in 1880 and in his book Symbolic Logic, published one year later. The diagrams were used long before … Continue reading Venn Again’s Awake
Heron’s Theorem: a Tool for Surveyors
Heron was one of the great Greek mathematicians of Alexandria, following in the tradition of Euclid, Archimedes, Eratosthenes and Apollonius. He lived in the first century, from about AD 10 to AD 70. His interests were in practical rather than theoretical mathematics and he wrote on measurement, mechanics and engineering. He devised a steam-powered device … Continue reading Heron’s Theorem: a Tool for Surveyors
Slicing Doughnuts
It is well-known that an ellipse is the locus of all points such that the sum of their distances from two fixed points, the foci, is constant. Thus, a gardener may map out an elliptical flower-bed by driving two stakes into the ground, looping a rope around them and pulling it taut with a pointed … Continue reading Slicing Doughnuts
A Toy Example of RSA Encryption
The RSA system has been presented many times, following the excellent expository article of Martin Gardner in the August 1977 issue of Scientific American. There is no need for yet another explanation of the system; the essentials are contained in the Wikipedia article RSA (cryptosystem), and in many other articles. The purpose of this note … Continue reading A Toy Example of RSA Encryption
Random Harmonic Series
We consider the convergence of the random harmonic series $latex \displaystyle R = \sum_{n=1}^{\infty}\frac{\sigma_{n}}{n} &fg=000000$ where $latex {\sigma_n\in\{-1,+1\}}&fg=000000$ is chosen randomly with probability $latex {1/2}&fg=000000$ of being either plus one or minus one. It follows from the Kolmogorov three-series theorem that the series is ``almost surely'' convergent. We are all familiar with the harmonic series … Continue reading Random Harmonic Series
Squircles
You can put a square peg in a round hole. Shapes between circles and squares have proved invaluable to engineers and have also found their way onto our dinner tables. A plate in the shape of a `squircle' is shown in this figure . The Equation of a Squircle An ellipse with centre at the origin … Continue reading Squircles
Lecture sans paroles: the factors of M67
In 1903 Frank Nelson Cole delivered an extraordinary lecture to the American Mathematical Society. For almost an hour he performed a calculation on the chalkboard without uttering a single word. When he finished, the audience broke into enthusiastic applause. Cole, an American mathematician born in 1861, was educated at Harvard. He lectured there and later … Continue reading Lecture sans paroles: the factors of M67
Bending the Rules to Square the Circle
Squaring the circle was one of the famous Ancient Greek mathematical problems. Although studied intensively for millennia by many brilliant scholars, no solution was ever found. The problem requires the construction of a square having area equal to that of a given circle. This must be done in a finite number of steps, using only … Continue reading Bending the Rules to Square the Circle
Prime Generating Formulae
The prime numbers have challenged and perplexed the greatest mathematicians for millennia. Shortly before he died, the brilliant Hungarian number theorist Paul Erdös said "it will be another million years, at least, before we understand the primes". The primes are scattered through the natural numbers in a manner that exhibits both order and chaos. For … Continue reading Prime Generating Formulae
Mathematics Everywhere (in Blackrock Station)
Mathematics is everywhere. We are often unaware of it but, when we observe our environment consciously, we can see mathematical structures all around us. Recently, while waiting for a train in Blackrock Station (Co Dublin), I photographed various objects in and around the station. There were circles and squares all about, parallel planes and lines, hexagons … Continue reading Mathematics Everywhere (in Blackrock Station)
Ramanujan’s Astonishing Knowledge of 1729
Question: What is the connection between Ramanujan's number 1729 and Fermat's Last Theorem? For the answer, read on. The story of how Srinivasa Ramanujan responded to G. H. Hardy's comment on the number of a taxi is familiar to all mathematicians. With the recent appearance of the film The Man who Knew Infinity, this curious … Continue reading Ramanujan’s Astonishing Knowledge of 1729
Sigmoid Functions: Gudermannian and Gompertz Curves
The Gudermannian is named after Christoph Gudermann (1798--1852). The Gompertz function is named after Benjamin Gompertz (1779--1865). These are two amongst several sigmoid functions. Sigmoid functions find applications in many areas, including population dynamics, artificial neural networks, cartography, control systems and probability theory. We will look at several examples in this class of functions. Sigmoid … Continue reading Sigmoid Functions: Gudermannian and Gompertz Curves
The Power Tower Fractal
We can construct a beautiful fractal set by defining an operation of iterating exponentials and applying it to the numbers in the complex plane. The operation is tetration and the fractal is called the power tower fractal or sometimes the tetration fractal. A detail of the set is shown in the figure here. The Operation … Continue reading The Power Tower Fractal
