George Salmon, Mathematician & Theologian

As you pass through the main entrance of Trinity College, the iconic campanile stands before you, flanked, in pleasing symmetry, by two life-size statues. On the right, on a granite plinth is the historian and essayist William Lecky. On the left, George Salmon (1819–1904) sits on a limestone platform. Salmon was a distinguished mathematician and … Continue reading George Salmon, Mathematician & Theologian

The curious behaviour of the Wilberforce Spring.

The Wilberforce Spring (often called the Wilberforce pendulum) is a simple mechanical device that illustrates the conversion of energy between two forms. It comprises a weight attached to a spring that is free to stretch up and down and to twist about its axis. In equilibrium, the spring hangs down with the pull of gravity … Continue reading The curious behaviour of the Wilberforce Spring.

Stokes’s 200th Birthday Anniversary

Next Tuesday, the 30th of August, is the 200th anniversary of the birth of George Gabriel Stokes. This extended blog post is to mark that occasion. See also an article in The Irish Times. Whether we are designing aircraft, modelling blood flow, studying propulsion, lubrication or the dynamics of swimming, constructing wind turbines or forecasting … Continue reading Stokes’s 200th Birthday Anniversary

Learning Maths without even Trying

Children have an almost limitless capacity to absorb knowledge if it is presented in an appealing and entertaining manner. Mathematics can be daunting, but it is possible to convey key ideas visually so that they are instantly accessible. Visiting Explorium recently, I saw such a visual display demonstrating the theorem of Pythagoras, which, according to … Continue reading Learning Maths without even Trying

Boxes and Loops

We will describe some generic behaviour patterns of dynamical systems. In many systems, the orbits exhibit characteristic patterns called boxes and loops. We first describe orbits for a simple pendulum, and then look at some systems in higher dimensions. Libration and Rotation of a Pendulum The simple pendulum, with one degree of freedom, provides a … Continue reading Boxes and Loops

What did the Romans ever do for Maths?

The ancient Romans developed many new techniques for engineering and architecture. The citizens of Rome enjoyed fountains, public baths, central heating, underground sewage systems and public toilets. All right, but apart from sanitation, medicine, education, irrigation, roads and aqueducts, what did the Romans ever do for maths? [TM166 or search for “thatsmaths” at irishtimes.com]. It might … Continue reading What did the Romans ever do for Maths?

Cumbersome Calculations in Ancient Rome

“Typus Arithmeticae” is a woodcut from the book Margarita Philosophica by Gregor Reisch of Freiburg, published in 1503. In the centre of the figure stands Arithmetica, the muse of mathematics. She is watching a competition between the Roman mathematician Boethius and the great Pythagoras. Boethius is crunching out a calculation using Hindu-Arabic numerals, while Pythagoras … Continue reading Cumbersome Calculations in Ancient Rome

Simple Curves that Perplex Mathematicians and Inspire Artists

The preoccupations of mathematicians can seem curious and strange to normal people. They sometimes expend great energy proving results that appear glaringly obvious. One such result is called the Jordan Curve Theorem. We all know that a circle has an inside and an outside, and that this property also holds for a much larger collection … Continue reading Simple Curves that Perplex Mathematicians and Inspire Artists

Bernard Bolzano, a Voice Crying in the Wilderness

Bernard Bolzano, born in Prague in 1781, was a Bohemian mathematician with Italian origins. Bolzano made several profound advances in mathematics that were not well publicized. As a result, his mathematical work was overlooked, often for many decades after his death. For example, his construction of a function that is continuous on an interval but … Continue reading Bernard Bolzano, a Voice Crying in the Wilderness

Spin-off Effects of the Turning Earth

On the rotating Earth, a moving object deviates from a straight line, being deflected to the right in the northern hemisphere and to the left in the southern hemisphere. The deflecting force is named after a nineteenth century French engineer, Gaspard-Gustave de Coriolis [TM164 or search for “thatsmaths” at irishtimes.com]. Coriolis was interested in the dynamics of machines, … Continue reading Spin-off Effects of the Turning Earth

The Rise and Rise of Women in Mathematics

The influential collection of biographical essays by Eric Temple Bell, Men of Mathematics, was published in 1937. It covered the lives of about forty mathematicians, from ancient times to the beginning of the twentieth century. The book inspired many boys to become mathematicians. However, it seems unlikely that it inspired many girls: the only woman … Continue reading The Rise and Rise of Women in Mathematics

Bouncing Billiard Balls Produce Pi

There are many ways of evaluating $latex {\pi}&fg=000000$, the ratio of the circumference of a circle to its diameter. We review several historical methods and describe a recently-discovered and completely original and ingenious method. Historical Methods Archimedes used inscribed and circumscribed polygons to deduce that $latex \displaystyle \textstyle{3\frac{10}{71} < \pi < 3\frac{10}{70}} &fg=000000$ giving roughly … Continue reading Bouncing Billiard Balls Produce Pi

Kepler’s Vanishing Circles Hidden in Hamilton’s Hodograph

The Greeks regarded the heavens as the epitome of perfection. All flaws and blemishes were confined to the terrestrial domain. Since the circle is perfect in its infinite symmetry, it was concluded by Aristotle that the Sun and planets move in circles around the Earth. Later, the astronomer Ptolemy accounted for deviations by means of … Continue reading Kepler’s Vanishing Circles Hidden in Hamilton’s Hodograph

Closing the Gap between Prime Numbers

​Occasionally, a major mathematical discovery comes from an individual working in isolation, and this gives rise to great surprise. Such an advance was announced by Yitang Zhang six years ago. [TM161 or search for “thatsmaths” at irishtimes.com]. After completing his doctorate at Purdue in 1991, Zhang had great difficulty finding an academic position and worked at various … Continue reading Closing the Gap between Prime Numbers

Massive Collaboration in Maths: the Polymath Project

Sometimes proofs of long-outstanding problems emerge without prior warning. In the 1990s, Andrew Wiles proved Fermat's Last Theorem. More recently, Yitang Zhang announced a key result on bounded gaps in the prime numbers. Both Wiles and Zhang had worked for years in isolation, keeping abreast of developments but carrying out intensive research programs unaided by … Continue reading Massive Collaboration in Maths: the Polymath Project

Joseph Fourier and the Greenhouse Effect

Jean-Baptiste Joseph Fourier, French mathematician and physicist, was born in Auxerre 251 years ago today. He is best known for the mathematical techniques that he developed in his analytical theory of heat transfer. Over the past two centuries, his methods have evolved into a major subject, harmonic analysis, with widespread applications in number theory, signal … Continue reading Joseph Fourier and the Greenhouse Effect

The Kill-zone: How to Dodge a Sniper’s Bullet

Under mild simplifying assumptions, a projectile follows a parabolic trajectory. This results from Newton's law of motion. Thus, for a fixed energy, there is an accessible region around the firing point comprising all the points that can be reached. We will derive a mathematical description for this kill-zone (the term kill-zone, used for dramatic effect, … Continue reading The Kill-zone: How to Dodge a Sniper’s Bullet

Hokusai’s Great Wave and Roguish Behaviour

Hokusai's woodcut “The Great Wave off Kanagawa”. “The Great Wave off Kanagawa”, one of the most iconic works of Japanese art, shows a huge breaking wave with foam thrusting forward at its crest, towering over three fishing boats, with Mt Fuji in the background [TM158 or search for “thatsmaths” at irishtimes.com]. This woodcut, produced by … Continue reading Hokusai’s Great Wave and Roguish Behaviour

Multiple Discoveries of the Thue-Morse Sequence

It is common practice in science to name important advances after the first discoverer or inventor. However, this process often goes awry. A humorous principle called Stigler's Law holds that no scientific result is named after its original discoverer. This law was formulated by Professor Stephen Stigler of the University of Chicago in his publication … Continue reading Multiple Discoveries of the Thue-Morse Sequence

From a Wide Wake to the Width of the World

The finite angular width of a ship's turbulent wake at the horizon enables the Earth's radius to be estimated. By ignoring evidence, Flat-Earthers remain secure in their delusions. The rest of us benefit greatly from accurate geodesy. Satellite communications, GPS navigation, large-scale surveying and cartography all require precise knowledge of the shape and form of the … Continue reading From a Wide Wake to the Width of the World

Discoveries by Amateurs and Distractions by Cranks

Do amateurs ever solve outstanding mathematical problems? Professional mathematicians are aware that almost every new idea they have about a mathematical problem has already occurred to others. Any really new idea must have some feature that explains why no one has thought of it before  [TM155 or search for “thatsmaths” at irishtimes.com]. It is both difficult and … Continue reading Discoveries by Amateurs and Distractions by Cranks

Really, 0.999999… is equal to 1. Surreally, this is not so!

The value of the recurring decimal 0.999999 … is a popular topic of conversation amongst amateur mathematicians of various levels of knowledge and expertise. Some of the discussions on the web are of little value or interest, but the topic touches on several subtle and deep aspects of number theory. In school we learn that … Continue reading Really, 0.999999… is equal to 1. Surreally, this is not so!

Trappist-1 & the Age of Aquarius

The Pythagoreans believed that the planets generate sounds as they move through the cosmos. The idea of the harmony of the spheres was brought to a high level by Johannes Kepler in his book Harmonices Mundi, where he identified many simple relationships between the orbital periods of the planets [TM154 or search for “thatsmaths” at irishtimes.com]. Kepler's … Continue reading Trappist-1 & the Age of Aquarius

Gaussian Curvature: the Theorema Egregium

One of greatest achievements of Carl Friedrich Gauss was a theorem so startling that he gave it the name Theorema Egregium or outstanding theorem. In 1828 he published his ``Disquisitiones generales circa superficies curvas'', or General investigation of curved surfaces. Gauss defined a quantity that measures the curvature of a two-dimensional surface. He was inspired by … Continue reading Gaussian Curvature: the Theorema Egregium

Random Numbers Plucked from the Atmosphere

Randomness is a slippery concept, defying precise definition. A simple example of a random series is provided by repeatedly tossing a coin. Assigning “1” for heads and “0” for tails, we generate a random sequence of binary digits or bits. Ten tosses might produce a sequence such as 1001110100. Continuing thus, we can generate a … Continue reading Random Numbers Plucked from the Atmosphere

Gravitational Waves & Ringing Teacups

Newton's law of gravitation describes how two celestial bodies orbit one another, each tracing out an elliptical path. But this is imprecise: the theory of general relativity shows that two such bodies radiate energy away in the form of gravitational waves (GWs), and spiral inwards until they eventually collide. Energy and angular momentum are carried … Continue reading Gravitational Waves & Ringing Teacups

The “Napoleon of Crime” and The Laws of Thought

A fascinating parallel between a brilliant mathematician and an arch-villain of crime fiction is drawn in a forthcoming book – New Light on George Boole – by Des MacHale and Yvonne Cohen. Professor James Moriarty, master criminal and nemesis of Sherlock Holmes, was described by the detective as “the Napoleon of crime”. The book presents … Continue reading The “Napoleon of Crime” and The Laws of Thought

Listing the Rational Numbers III: The Calkin-Wilf Tree

The rational numbers are countable: they can be put into one-to-one correspondence with the natural numbers. In previous articles we showed how the rationals can be presented as a list that includes each rational precisely once. One approach leads to the Farey Sequences. A second, related, approach gives us the Stern-Brocot Tree. Here, we introduce … Continue reading Listing the Rational Numbers III: The Calkin-Wilf Tree

Johannes Kepler and the Song of the Earth

Johannes Kepler, German mathematician and astronomer, sought to explain the solar system in terms of divine harmony. His goal was to find a system of the world that was mathematically correct and harmonically pleasing. His methodology was scientific in that his hypotheses were inspired by and confirmed by observations. However, his theological training and astrological … Continue reading Johannes Kepler and the Song of the Earth