Occasionally, a major mathematical discovery comes from an individual working in isolation, and this gives rise to great surprise. Such an advance was announced by Yitang Zhang six years ago. [TM161 or search for “thatsmaths” at irishtimes.com].

## Posts Tagged 'Arithmetic'

### Closing the Gap between Prime Numbers

Published April 18, 2019 Irish Times Leave a CommentTags: Arithmetic, Number Theory

### Rambling and Reckoning

Published February 7, 2019 Irish Times Leave a CommentTags: Arithmetic, Recreational Maths

A walk on the beach, in the hills or along a river bank provides great opportunities for mathematical reflection. How high is the mountain? How many grains of sand are on the beach? How much water is flowing in the river? [TM156 or search for “thatsmaths” at irishtimes.com].

While the exact answers may be elusive, we can make reasonable guesstimates using basic knowledge and simple mathematical reasoning. And we will be walking in the footsteps of some of the world’s greatest thinkers.

Continue reading ‘Rambling and Reckoning’### Listing the Rational Numbers III: The Calkin-Wilf Tree

Published November 8, 2018 Occasional Leave a CommentTags: Arithmetic, Number Theory

The rational numbers are countable: they can be put into one-to-one correspondence with the natural numbers. In previous articles we showed how the rationals can be presented as a list that includes each rational precisely once. One approach leads to the Farey Sequences. A second, related, approach gives us the Stern-Brocot Tree. Here, we introduce another tree structure, The Calkin-Wilf Tree.

Continue reading ‘Listing the Rational Numbers III: The Calkin-Wilf Tree’

### Listing the Rational Numbers II: The Stern-Brocot Tree

Published October 11, 2018 Occasional Leave a CommentTags: Arithmetic, Number Theory

The rational numbers are countable: they can be put into one-to-one correspondence with the natural numbers. But it is not obvious how to construct a list that is sure to contain every rational number precisely once. In a previous post we described the Farey Sequences. Here we examine another, related, approach.

Continue reading ‘Listing the Rational Numbers II: The Stern-Brocot Tree’

### Listing the Rational Numbers: I. Farey Sequences

Published September 27, 2018 Occasional Leave a CommentTags: Arithmetic, Number Theory

We know, thanks to Georg Cantor, that the rational numbers — ratios of integers — are countable: they can be put into one-to-one correspondence with the natural numbers.

Continue reading ‘Listing the Rational Numbers: I. Farey Sequences’

### The Empty Set is Nothing to Worry About

Published July 19, 2018 Irish Times Leave a CommentTags: Arithmetic, Set Theory

Today’s article is about nothing: nothing at all, as encapsulated in the number zero and the empty set. It took humanity millennia to move beyond the counting numbers. Zero emerged in several civilizations, first as a place-holder to denote a space or gap between digits, and later as a true number, which could be manipulated like any other. [see TM143, or search for “thatsmaths” at irishtimes.com].

What proportion of all numbers less than a given size N have a 9 in their decimal expansion? A naive argument would be that, since 9 is one of ten distinct digits, the answer must be about 10%. But this is not “remotely close” to the true answer.