The Sieve of Eratosthenes and a Partition of the Natural Numbers

The sieve of Eratosthenes is a method for finding all the prime numbers less than some maximum value $latex {M}&fg=000000$ by repeatedly removing multiples of the smallest remaining prime until no composite numbers less than or equal to $latex {M}&fg=000000$ remain. The sieve provides a means of partitioning the natural numbers. We examine this partition … Continue reading The Sieve of Eratosthenes and a Partition of the Natural Numbers

Maths in the Time of the Pharaohs

Why would the Ancient Egyptians have any interest in or need for mathematics? There are many reasons. They had a well-organised and developed civilisation extending over millennia. Science and maths must have played important or even essential roles in this culture. They needed measurement for land surveying and for designing irrigation canals, arithmetic for accounting … Continue reading Maths in the Time of the Pharaohs

Amusical Permutations and Unsettleable Problems

In a memorial tribute in the Notices of the American Mathematical Society (Ryba, et al, 2022), Dierk Schleicher wrote of how he convinced John Conway to publish a paper, ``On unsettleable arithmetical problems'', which included a discussion of the Amusical Permutations. This paper, which discusses arithmetical statements that are almost certainly true but likely unprovable, … Continue reading Amusical Permutations and Unsettleable Problems

The Spine of Pascal’s Triangle

We are all familiar with Pascal's Triangle, also known as the Arithmetic Triangle (AT). Each entry in the AT is the sum of the two closest entries in the row above it. The $latex {k}&fg=000000$-th entry in row $latex {n}&fg=000000$ is the binomial coefficient $latex {\binom{n}{k}}&fg=000000$ (read $latex {n}&fg=000000$-choose-$latex {k}&fg=000000$), the number of ways of … Continue reading The Spine of Pascal’s Triangle

The Simple Arithmetic Triangle is full of Surprises

Pascal’s triangle is one of the most famous of all mathematical diagrams, simple to construct and yet rich in mathematical patterns. These can be found by a web search, but their discovery by study of the diagram is vastly more satisfying, and there is always a chance of finding something never seen before  [TM212 or search … Continue reading The Simple Arithmetic Triangle is full of Surprises

Suitable Names for Large Numbers

One year ago, there were just two centibillionaires, Jeff Bezos and Bill Gates. Recently, Facebook's Mark Zuckerberg has joined the Amazon and Microsoft founders. Elon Musk, CEO of Tesla and SpaceX, is tipped to be next to join this exclusive club [TM194 or search for “thatsmaths” at irishtimes.com]. The word centibillionaire has slithered into common usage for … Continue reading Suitable Names for Large Numbers

What did the Romans ever do for Maths?

The ancient Romans developed many new techniques for engineering and architecture. The citizens of Rome enjoyed fountains, public baths, central heating, underground sewage systems and public toilets. All right, but apart from sanitation, medicine, education, irrigation, roads and aqueducts, what did the Romans ever do for maths? [TM166 or search for “thatsmaths” at irishtimes.com]. It might … Continue reading What did the Romans ever do for Maths?

Closing the Gap between Prime Numbers

​Occasionally, a major mathematical discovery comes from an individual working in isolation, and this gives rise to great surprise. Such an advance was announced by Yitang Zhang six years ago. [TM161 or search for “thatsmaths” at irishtimes.com]. After completing his doctorate at Purdue in 1991, Zhang had great difficulty finding an academic position and worked at various … Continue reading Closing the Gap between Prime Numbers

Listing the Rational Numbers III: The Calkin-Wilf Tree

The rational numbers are countable: they can be put into one-to-one correspondence with the natural numbers. In previous articles we showed how the rationals can be presented as a list that includes each rational precisely once. One approach leads to the Farey Sequences. A second, related, approach gives us the Stern-Brocot Tree. Here, we introduce … Continue reading Listing the Rational Numbers III: The Calkin-Wilf Tree

Listing the Rational Numbers II: The Stern-Brocot Tree

The rational numbers are countable: they can be put into one-to-one correspondence with the natural numbers. But it is not obvious how to construct a list that is sure to contain every rational number precisely once. In a previous post we described the Farey Sequences. Here we examine another, related, approach. The Stern-Brocot Tree We … Continue reading Listing the Rational Numbers II: The Stern-Brocot Tree

Listing the Rational Numbers: I. Farey Sequences

We know, thanks to Georg Cantor, that the rational numbers --- ratios of integers --- are countable: they can be put into one-to-one correspondence with the natural numbers. How can we make a list that includes all rationals? For the present, let us consider rationals in the interval $latex {[0,1]}&fg=000000$. It would be nice if … Continue reading Listing the Rational Numbers: I. Farey Sequences

“Dividends and Divisors Ever Diminishing”

Next Saturday is Bloomsday, the anniversary of the date on which the action of Ulysses took place. Mathematical themes occur occasionally throughout Ulysses, most notably in the penultimate episode, Ithaca, where the exchanges between Leopold Bloom and Stephen Dedalus frequently touch on weighty scientific matters. [Last week's ThatsMaths post] In Ithaca, the narrator takes every … Continue reading “Dividends and Divisors Ever Diminishing”

Leopold Bloom’s Arithmetical Adventures

As Bloomsday approaches, we reflect on James Joyce and mathematics. Joyce entered UCD in September 1898. His examination marks are recorded in the archives of the National University of Ireland, and summarized in a table in Richard Ellmann's biography of Joyce (reproduced below)  [TM140 or search for “thatsmaths” at irishtimes.com]. The marks fluctuate widely, suggesting some lack of … Continue reading Leopold Bloom’s Arithmetical Adventures

Modular Arithmetic: from Clock Time to High Tech

You may never have heard of modular arithmetic, but you use it every day without the slightest difficulty. In this system, numbers wrap around when they reach a certain size called the modulus; it is the arithmetic of remainders [TM126 or search for “thatsmaths” at irishtimes.com]. When reckoning hours, we count up to twelve and start again … Continue reading Modular Arithmetic: from Clock Time to High Tech

Brun’s Constant and the Pentium Bug

Euclid showed by a deliciously simple argument that the number of primes is infinite. In a completely different manner, Euler confirmed the same result. Euler's conclusion followed from his demonstration that the sum of the reciprocals of the primes diverges: $latex \displaystyle \sum_{p\in\mathbb{P}} \frac{1}{p} = \infty &fg=000000$ Obviously, this could not happen if there were … Continue reading Brun’s Constant and the Pentium Bug

The Mathematics of Voting

Selection of leaders by voting has a history reaching back to the Athenian democracy. Elections are essentially arithmetical exercises, but they involve more than simple counting, and have some subtle mathematical aspects [TM085, or search for “thatsmaths” at irishtimes.com]. The scientific study of voting and elections, which began around the time of the French Revolution, is called … Continue reading The Mathematics of Voting

You Can Do Maths

Bragging about mathematical ineptitude is not cool. There is nothing admirable about ignorance and incompetence. Moreover, everyone thinks mathematically all the time, even if they are not aware of it. Can we all do maths? Yes, we can!  [See this week’s That’s Maths column (TM064) or search for “thatsmaths” at irishtimes.com]. We use simple arithmetic … Continue reading You Can Do Maths

The Ups and Downs of Hailstone Numbers

Hailstones, in the process of formation, make repeated excursions up and down within a cumulonimbus cloud until finally they fall to the ground. We look at sequences of numbers that oscillate in a similarly erratic manner until they finally reach the value 1. They are called hailstone numbers. The Collatz Conjecture There are many simply-stated … Continue reading The Ups and Downs of Hailstone Numbers