Amongst the many joys of mathematics are the beautiful patterns that appear unexpectedly from time to time. In 1951, Alfred Moessner discovered a delightful and ingenious way of generating sequences of powers of natural numbers. It is surprisingly simple and offers great opportunities for development and generalization.

It is well-known that the sum of odd numbers yields a perfect square:

1 + 3 + 5 + … + (2*n* – 1) = *n *^{2}

This is easily demonstrated in a geometric way. We start with a unit square, and repeatedly add an additional row and column on the “east” and “north” sides and a unit square at the “north-east” corner. This amounts to adding the next odd number and, at each stage, a new square is produced.