Musical notes that are simply related to each other have a pleasing effect when sounded together. Each tone has a characteristic rate of oscillation, or frequency. For example, Middle C on the piano oscillates 264 times per second or has a frequency of 264 Hz (Hertz). If the frequencies of two notes have a ratio of two small whole numbers, the notes are harmonically related and sound pleasant when played together.

## Posts Tagged 'Music'

### Hearing Harmony, Seeing Symmetry

Published May 11, 2017 Occasional Leave a CommentTags: Geometry, Music

The links between mathematics and music are manifold. Mathematics can be set to music in a simple but surprising manner. For the award ceremony of the Gödel Medal in 2014, a musical interpretation of Gödel’s incompleteness Theorems was written by Danish composer Niels Marthinsen. It encodes the basic axioms of number theory that form the focus of Gödel’s Theorems.

An ingenious method of tuning pianos, based on the concept of entropy, has recently been devised by Haye Hinrichsen of Würzburg University. Entropy, which first appeared in the mid-nineteenth century in thermodynamics and later in statistical mechanics, is a measure of disorder. Around 1948 Claude Shannon developed a mathematical theory of communications and used entropy as an indicator of information content [TM084, or search for “thatsmaths” at irishtimes.com].

Every pure musical tone has a frequency, the number of oscillations per second in the sound wave. Doubling the frequency corresponds to moving up one octave. A musical note consists of a base frequency or pitch, called the *fundamental* together with a series of *harmonics*, or oscillations whose frequencies are whole-number multiples of the fundamental frequency.