Posts Tagged 'Algebra'

The Many Modern Uses of Quaternions

Hamiltons-Bridge-PlaqueThe story of William Rowan Hamilton’s discovery of new four-dimensional numbers called quaternions is familiar. The solution of a problem that had bothered him for years occurred to him in a flash of insight as he walked along the Royal Canal in Dublin. But this Eureka moment did not arise spontaneously: it was the result of years of intense effort. The great French mathematician Henri Poincaré also described how sudden inspiration occurs unexpectedly, but always following a period of concentrated research [TM148, or search for “thatsmaths” at irishtimes.com].

Continue reading ‘The Many Modern Uses of Quaternions’

The Flight of the Bumble Bee

Alice and Bob, initially a distance l apart, walk towards each other, each at a speed w. A bumble bee flies from the nose of one to the nose of the other and back again, repeating this zig-zag flight at speed f until Alice and Bob meet. How far does the bumble bee fly?

Flight-of-BumbleBee-Music

Continue reading ‘The Flight of the Bumble Bee’

Marden’s Marvel

Although polynomial equations have been studied for centuries, even millennia, surprising new results continue to emerge. Marden’s Theorem, published in 1945, is one such — delightful — result.

Marden-Polynomial

Cubic with roots at x=1, x=2 and x=3.

Continue reading ‘Marden’s Marvel’

Sophus Lie

It is difficult to imagine modern mathematics without the concept of a Lie group.” (Ioan James, 2002).

Sophus-Lie

Sophus Lie (1842-1899)

Sophus Lie grew up in the town of Moss, south of Oslo. He was a powerful man, tall and strong with a booming voice and imposing presence. He was an accomplished sportsman, most notably in gymnastics. It was no hardship for Lie to walk the 60 km from Oslo to Moss at the weekend to visit his parents. At school, Lie was a good all-rounder, though his mathematics teacher, Ludvig Sylow, a pioneer of group theory, did not suspect his great potential or anticipate his remarkable achievements in that field.

Continue reading ‘Sophus Lie’

Cubic Skulduggery & Intrigue

Cardano-Formula

Solution of a cubic equation, usually called Cardano’s formula.

Babylonian mathematicians knew how to solve simple polynomial equations, in which the unknown quantity that we like to call x enters in the form of powers, that is, x multiplied repeatedly by itself. When only x appears, we have a linear equation. If x-squared enters, we have a quadratic. The third power of x yields a cubic equation, the fourth power a quartic and so on [TM135 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘Cubic Skulduggery & Intrigue’

Metallic Means

goldenmean-pentagram

The golden mean occurs repeatedly in the pentagram [image Wikimedia Commons]

Everyone knows about the golden mean. It must be one of the most written-about numbers, certainly in recreational mathematics. It is usually denoted by {\phi} and is the positive root of the quadratic equation

\displaystyle x^2 - x - 1 = 0 \ \ \ \ \ (1)

with the value

{\phi = (1+\sqrt{5})/2 \approx 1.618}.

There is no doubt that {\phi} is significant in many biological contexts and has also been an inspiration for artists. Called the Divine Proportion, it  was described in a book of that name by Luca Pacioli, a contemporary and friend of Leonardo da Vinci.

Continue reading ‘Metallic Means’

The Beginning of Modern Mathematics

The late fifteenth century was an exciting time in Europe. Western civilization woke with a start after the slumbers of the medieval age. Johannes Gutenberg’s printing press arrived in 1450 and changed everything. Universities in Bologna, Oxford, Salamanca, Paris and elsewhere began to flourish. Leonardo da Vinci was in his prime and Christopher Columbus was discovering a new world.

davinci-dodecahedron

Illustrations by Leonardo da Vinci in Pacioli’s De Divina Proportione.

Continue reading ‘The Beginning of Modern Mathematics’


Last 50 Posts

Categories