Simple Models of Atmospheric Vortices

Atmospheric circulation systems have a wide variety of structures and there is no single mechanistic model that describes all their characteristics. However, we can construct simple kinematic models that capture some primary aspects of the flow. For simplicity, we will concentrate on idealized extra-tropical depressions. We will not consider hurricanes and tropical storms in any … Continue reading Simple Models of Atmospheric Vortices

Zhukovsky’s Airfoil

A simple transformation with remarkable properties was used by Nikolai Zhukovsky around 1910 to study the flow around aircraft wings. It is defined by $latex \displaystyle \omega = \textstyle{\frac{1}{2}}\displaystyle{\left(z +\frac{1}{z}\right)} &fg=000000$ and is usually called the Joukowsky Map. We begin with a discussion of the theory of fluid flow in two dimensions. Readers familiar with … Continue reading Zhukovsky’s Airfoil

Stokes’s 200th Birthday Anniversary

Next Tuesday, the 30th of August, is the 200th anniversary of the birth of George Gabriel Stokes. This extended blog post is to mark that occasion. See also an article in The Irish Times. Whether we are designing aircraft, modelling blood flow, studying propulsion, lubrication or the dynamics of swimming, constructing wind turbines or forecasting … Continue reading Stokes’s 200th Birthday Anniversary

Spin-off Effects of the Turning Earth

On the rotating Earth, a moving object deviates from a straight line, being deflected to the right in the northern hemisphere and to the left in the southern hemisphere. The deflecting force is named after a nineteenth century French engineer, Gaspard-Gustave de Coriolis [TM164 or search for “thatsmaths” at irishtimes.com]. Coriolis was interested in the dynamics of machines, … Continue reading Spin-off Effects of the Turning Earth

Stan Ulam, a mathematician who figured how to initiate fusion

Stanislaw Ulam, born in Poland in 1909, was a key member of the remarkable Lvov School of Mathematics, which flourished in that city between the two world wars. Ulam studied mathematics at the Lvov Polytechnic Institute, getting his PhD in 1933. His original research was in abstract mathematics, but he later became interested in a … Continue reading Stan Ulam, a mathematician who figured how to initiate fusion

Inertial Oscillations and Phugoid Flight

The English aviation pioneer Frederick Lanchester (1868--1946) introduced many important contributions to aerodynamics. He analysed the motion of an aircraft under various consitions of lift and drag. He introduced the term ``phugoid'' to describe aircraft motion in which the aircraft alternately climbs and descends, varying about straight and level flight. This is one of the … Continue reading Inertial Oscillations and Phugoid Flight

Modelling Rogue Waves

There are many eyewitness accounts by mariners of gigantic waves – almost vertical walls of water towering over ocean-going ships – that appear from nowhere and do great damage, sometimes destroying large vessels completely. Oceanographers, who have had no way of explaining these 'rogue waves', have in the past been dismissive of these reports [TM090, or search for … Continue reading Modelling Rogue Waves

Richardson’s Fantastic Forecast Factory

Modern weather forecasts are made by calculating solutions of the mathematical equations that express the fundamental physical principles governing the atmosphere  [TM083, or search for “thatsmaths” at irishtimes.com] The solutions are generated by complex simulation models with millions of lines of code, implemented on powerful computer equipment. The meteorologist uses the computer predictions to produce … Continue reading Richardson’s Fantastic Forecast Factory

Falling Bodies [1]: Sky-diving

Aristotle was clear: heavy bodies fall faster than light ones. He arrived at this conclusion by pure reasoning, without experiment. Today we insist on a physical demonstration before such a conclusion is accepted. Galileo tested Aristotle's theory: he dropped bodies of different weights simultaneously from the Leaning Tower of Pisa and found that, to a … Continue reading Falling Bodies [1]: Sky-diving

How Big was the Bomb?

By a brilliant application of dimensional analysis, G.I.Taylor estimated the explosive energy of the first atomic blast, the Trinity Test (see this week’s That’s Maths column in The Irish Times, TM053, or search for “thatsmaths” at irishtimes.com). Physicists, engineers and applied mathematicians have an arsenal of problem-solving techniques. Computers crunch out numerical solutions in short … Continue reading How Big was the Bomb?

Paddling Uphill

Recently, I kayaked with two friends on the River Shannon, which flows southward through the centre of Ireland. Starting at Dowra, Co. Cavan, we found it easy paddling until we reached Lough Allen, when the going became very tough. It was an uphill struggle. Could we really be going uphill while heading downstream?  That seems … Continue reading Paddling Uphill