Benford’s Law Revisited

Several researchers have observed that, in a wide variety of collections of numerical data, the leading --- or most significant --- decimal digits are not uniformly distributed, but conform to a logarithmic distribution. Of the nine possible values, $latex {D_1=1}&fg=000000$ occurs more than $latex {30\%}&fg=000000$ of the time while $latex {D_1=9}&fg=000000$ is found in less … Continue reading Benford’s Law Revisited

Bernoulli’s Golden Theorem and the Law of Large Numbers

Jakob Bernoulli, head of a dynasty of brilliant scholars, was one of the world’s leading mathematicians. Bernoulli's great work, Ars Conjectandi, published in 1713, included a profound result that he established “after having meditated on it for twenty years”. He called it his “golden theorem”. It is known today as the law of large numbers, … Continue reading Bernoulli’s Golden Theorem and the Law of Large Numbers

Think of a Number: What are the Odds that it is Even?

Pick a positive integer at random. What is the chance of it being 100? What or the odds that it is even? What is the likelihood that it is prime? Since the set $latex {\mathbb{N}}&fg=000000$ of natural numbers is infinite, there are difficulties in assigning probabilities to subsets of $latex {\mathbb{N}}&fg=000000$. We require the probability … Continue reading Think of a Number: What are the Odds that it is Even?

How many numbers begin with a 1? More than 30%!

The irregular distribution of the first digits of numbers in data-bases provides a valuable tool for fraud detection. A remarkable rule that applies to many datasets was accidentally discovered by an American physicist, Frank Benford, who described his discovery in a 1938 paper, "The Law of Anomalous Numbers" [TM181 or search for “thatsmaths” at irishtimes.com]. … Continue reading How many numbers begin with a 1? More than 30%!

The Improbability Principle

Extremely improbable events are commonplace. “It's an unusual day if nothing unusual happens”. This aphorism encapsulates a characteristic pattern of events called the Improbability Principle. Popularised by statistician Sir David Hand, emeritus professor at Imperial College London, it codifies the paradoxical idea that extremely improbable events happen frequently.  [TM112 or search for “thatsmaths” at irishtimes.com]. We … Continue reading The Improbability Principle

Random Harmonic Series

We consider the convergence of the random harmonic series $latex \displaystyle R = \sum_{n=1}^{\infty}\frac{\sigma_{n}}{n} &fg=000000$ where $latex {\sigma_n\in\{-1,+1\}}&fg=000000$ is chosen randomly with probability $latex {1/2}&fg=000000$ of being either plus one or minus one. It follows from the Kolmogorov three-series theorem that the series is ``almost surely'' convergent. We are all familiar with the harmonic series … Continue reading Random Harmonic Series