Melencolia: An Enigma for Half a Millennium

Albrecht Dürer, master painter and engraver of the German Renaissance, made his Melencolia I in 1514, just over five centuries ago. It is one of the most brilliant engravings of all time, and amongst the most intensively debated works of art [TM079; or search for “thatsmaths” at irishtimes.com ]. The winged figure, Melancholy, sits in a … Continue reading Melencolia: An Enigma for Half a Millennium

A Few Wild Functions

Sine Function: $latex {\mathbf{y=\sin x}}&fg=000000$ The function $latex {y=\sin x}&fg=000000$ is beautifully behaved, oscillating regularly along the entire real line $latex {\mathbb{R}}&fg=000000$ (it is also well-behaved for complex $latex {x}&fg=000000$ but we won't consider that here). Chirp Function: $latex {\mathbf{y=\sin x^2}}&fg=000000$ Now $latex {y=\sin x^2}&fg=000000$ is also well-behaved: its oscillations become more rapid as $latex … Continue reading A Few Wild Functions

Hamming’s Smart Error-correcting Codes

In the late 1940s, Richard Hamming, working at Bell Labs, was exasperated with the high level of errors occurring in the electro-mechanical computing equipment he was using. Punched card machines were constantly misreading, forcing him to restart his programs. He decided to do something about it. This was when error-correcting codes were invented. A simple … Continue reading Hamming’s Smart Error-correcting Codes

Thomas Harriot: Mathematician, Astronomer and Navigator

Sir Walter Raleigh, adventurer, explorer and privateer, was among most colourful characters of Tudor times. He acquired extensive estates in Waterford and Cork, including Molana Abbey near Youghal, which he gave to his friend and advisor, the brilliant mathematician and astronomer Thomas Harriot. Raleigh needed an excellent navigator on his transatlantic voyages, and he brought … Continue reading Thomas Harriot: Mathematician, Astronomer and Navigator

RT60 and Acoustic Excellence

This week’s That’s Maths column (TM072) [search for “thatsmaths” at irishtimes.com] is about architectural acoustics, and about the remarkable work of Wallace Clement Sabine. Attending a mathematical seminar in UCD recently, I could understand hardly a word. The problem lay not with the arcane mathematics but with the poor acoustics of the room. The lecturer … Continue reading RT60 and Acoustic Excellence

Increasingly Abstract Algebra

In the seventeenth century, the algebraic approach to geometry proved to be enormously fruitful. When René Descartes (1596-1650) developed coordinate geometry, the study of equations (algebra) and shapes (geometry) became inextricably interlinked. The move towards greater abstraction can make mathematics appear more abstruse and impenetrable, but it brings greater clarity and power, and can lead … Continue reading Increasingly Abstract Algebra

Game Theory & Nash Equilibrium

Game theory deals with mathematical models of situations involving conflict, cooperation and competition. Such situations are central in the social and behavioural sciences. Game Theory is a framework for making rational decisions in many fields: economics, political science, psychology, computer science and biology. It is also used in industry, for decisions on manufacturing, distribution, consumption, … Continue reading Game Theory & Nash Equilibrium

For Good Comms, Leaky Cables are Best

A counter-intuitive result of Oliver Heaviside showed how telegraph cables should be designed [see this week’s That’s Maths column (TM066) or search for “thatsmaths” at irishtimes.com]. Robert Halpin In Wicklow town an obelisk commemorates Robert Halpin, a Master Mariner born at the nearby Bridge Tavern. Halpin, one of the more important mariners of the nineteenth … Continue reading For Good Comms, Leaky Cables are Best

Mode-S: Aircraft Data improves Weather Forecasts

A simple application of vectors yields valuable new wind observations for weather forecasting [see this week’s That’s Maths column (TM065) or search for “thatsmaths” at irishtimes.com]. It has often happened that an instrument designed for one purpose has proved invaluable for another. Galileo observed the regular swinging of a pendulum. Christiaan Huygens derived a mathematical … Continue reading Mode-S: Aircraft Data improves Weather Forecasts

You Can Do Maths

Bragging about mathematical ineptitude is not cool. There is nothing admirable about ignorance and incompetence. Moreover, everyone thinks mathematically all the time, even if they are not aware of it. Can we all do maths? Yes, we can!  [See this week’s That’s Maths column (TM064) or search for “thatsmaths” at irishtimes.com]. We use simple arithmetic … Continue reading You Can Do Maths

MGP: Tracing our Mathematical Ancestry

There is great public interest in genealogy. Many of us live in hope of identifying some illustrious forebear, or enjoy the frisson of having a notorious murderer somewhere in our family tree. Academic genealogies can also be traced: see this week’s That’s Maths column in The Irish Times (TM062, or search for “thatsmaths” at irishtimes.com). … Continue reading MGP: Tracing our Mathematical Ancestry

Perelman’s Theorem: Who Wants to be a Millionaire?

This week’s That’s Maths column in The Irish Times (TM061, or search for “thatsmaths” at irishtimes.com) is about the remarkable mathematician Grisha Perelman and his proof of a one-hundred year old conjecture. Topology During the twentieth century topology emerged as one of the pillars of mathematics, alongside algebra and analysis. Geometers consider lengths, angles and … Continue reading Perelman’s Theorem: Who Wants to be a Millionaire?

Barcodes and QR Codes: Zebra stripes and Leopard spots

Barcodes and QR codes are described in this week’s That’s Maths column in The Irish Times (TM060, or search for “thatsmaths” at irishtimes.com). Virtually everything that you buy in your local supermarket has a curious little zebra-like pattern the size of a postage stamp printed on it. Barcodes, originally devised about forty years ago to … Continue reading Barcodes and QR Codes: Zebra stripes and Leopard spots