Listing the Rational Numbers II: The Stern-Brocot Tree

The rational numbers are countable: they can be put into one-to-one correspondence with the natural numbers. But it is not obvious how to construct a list that is sure to contain every rational number precisely once. In a previous post we described the Farey Sequences. Here we examine another, related, approach. The Stern-Brocot Tree We … Continue reading Listing the Rational Numbers II: The Stern-Brocot Tree

Listing the Rational Numbers: I. Farey Sequences

We know, thanks to Georg Cantor, that the rational numbers --- ratios of integers --- are countable: they can be put into one-to-one correspondence with the natural numbers. How can we make a list that includes all rationals? For the present, let us consider rationals in the interval $latex {[0,1]}&fg=000000$. It would be nice if … Continue reading Listing the Rational Numbers: I. Farey Sequences

Tom Lehrer: Comical Musical Mathematical Genius

Tom Lehrer, mathematician, singer, songwriter and satirist, was born in New York ninety years ago. He was active in public performance for about 25 years from 1945 to 1970. He is most renowned for his hilarious satirical songs, many of which he recorded and which are available today on YouTube [see TM147, or search for “thatsmaths” … Continue reading Tom Lehrer: Comical Musical Mathematical Genius

Face Recognition

As you pass through an airport, you are photographed several times by security systems. Face recognition systems can identify you by comparing your digital image to faces stored in a database. This form of identification is gaining popularity, allowing you to access online banking without a PIN or password.  [see TM146, or search for “thatsmaths” at irishtimes.com]. … Continue reading Face Recognition

Euler’s “Degree of Agreeableness” for Musical Chords

The links between music and mathematics stretch back to Pythagoras and many leading mathematicians have studied the theory of music. Music and mathematics were pillars of the Quadrivium, the four-fold way that formed the basis of higher education for thousands of years. Music was a central theme for Johannes Kepler in his Harmonices Mundi – … Continue reading Euler’s “Degree of Agreeableness” for Musical Chords

Trigonometric Comfort Blankets on Hilltops

On a glorious sunny June day we reached the summit of Céidín, south of the Glen of Imall, to find a triangulation station or trig pillar. These concrete pillars are found on many prominent peaks throughout Ireland, and were erected to aid in surveying the country  [see TM142, or search for “thatsmaths” at irishtimes.com]. The pillars are about … Continue reading Trigonometric Comfort Blankets on Hilltops

“Dividends and Divisors Ever Diminishing”

Next Saturday is Bloomsday, the anniversary of the date on which the action of Ulysses took place. Mathematical themes occur occasionally throughout Ulysses, most notably in the penultimate episode, Ithaca, where the exchanges between Leopold Bloom and Stephen Dedalus frequently touch on weighty scientific matters. [Last week's ThatsMaths post] In Ithaca, the narrator takes every … Continue reading “Dividends and Divisors Ever Diminishing”

Leopold Bloom’s Arithmetical Adventures

As Bloomsday approaches, we reflect on James Joyce and mathematics. Joyce entered UCD in September 1898. His examination marks are recorded in the archives of the National University of Ireland, and summarized in a table in Richard Ellmann's biography of Joyce (reproduced below)  [TM140 or search for “thatsmaths” at irishtimes.com]. The marks fluctuate widely, suggesting some lack of … Continue reading Leopold Bloom’s Arithmetical Adventures

A Glowing Geometric Proof that Root-2 is Irrational

It was a great shock to the Pythagoreans to discover that the diagonal of a unit square could not be expressed as a ratio of whole numbers. This discovery represented a fundamental fracture between the mathematical domains of Arithmetic and Geometry: since the Greeks recognized only whole numbers and ratios of whole numbers, the result … Continue reading A Glowing Geometric Proof that Root-2 is Irrational

Stan Ulam, a mathematician who figured how to initiate fusion

Stanislaw Ulam, born in Poland in 1909, was a key member of the remarkable Lvov School of Mathematics, which flourished in that city between the two world wars. Ulam studied mathematics at the Lvov Polytechnic Institute, getting his PhD in 1933. His original research was in abstract mathematics, but he later became interested in a … Continue reading Stan Ulam, a mathematician who figured how to initiate fusion

Fourier’s Wonderful Idea – II

Solving PDEs by a Roundabout Route Joseph Fourier, born just 250 years ago, introduced a wonderful idea that revolutionized science and mathematics: any function or signal can be broken down into simple periodic sine-waves. Radio waves, micro-waves, infra-red radiation, visible light, ultraviolet light, X-rays and gamma rays are all forms of electromagnetic radiation, differing only … Continue reading Fourier’s Wonderful Idea – II

Sophus Lie

“It is difficult to imagine modern mathematics without the concept of a Lie group.” (Ioan James, 2002). Sophus Lie grew up in the town of Moss, south of Oslo. He was a powerful man, tall and strong with a booming voice and imposing presence. He was an accomplished sportsman, most notably in gymnastics. It was no … Continue reading Sophus Lie

Reducing R-naught to stem the spread of Epidemics

We are reminded each year to get vaccinated against the influenza virus. The severity of the annual outbreak is not known with certainty in advance, but a major pandemic is bound to occur sooner or later. Mathematical models play an indispensable role in understanding and managing infectious diseases. Models vary in sophistication from the simple … Continue reading Reducing R-naught to stem the spread of Epidemics

The Evolute: Envelope of Normals

Every curve in the plane has several other curves associated with it. One of the most interesting and important of these is the evolute. Suppose the curve $latex {\gamma}&fg=000000$ is specified in parametric form $latex {(x(t), y(t))}&fg=000000$ for $latex {t \in [0,1]}&fg=000000$. The centre of curvature $latex {\Gamma = (X, Y)}&fg=000000$ at a particular point … Continue reading The Evolute: Envelope of Normals

A Symbol for Global Circulation

The recycling symbol consisting of three bent arrows is found on bottles, cartons and packaging of all kinds. It originated in 1970 when the Chicago-based Container Corporation of America (CCA) held a competition for the design of a symbol suitable for printing on cartons, to encourage recycling and re-use of packaging materials. The competition for … Continue reading A Symbol for Global Circulation

Modular Arithmetic: from Clock Time to High Tech

You may never have heard of modular arithmetic, but you use it every day without the slightest difficulty. In this system, numbers wrap around when they reach a certain size called the modulus; it is the arithmetic of remainders [TM126 or search for “thatsmaths” at irishtimes.com]. When reckoning hours, we count up to twelve and start again … Continue reading Modular Arithmetic: from Clock Time to High Tech