[This is a condensed version of an article [5] in *Mathematics Today*]

A remarkable theorem, discovered in 1959 by Armenian astronomer Mamikon Mnatsakanian, allows problems in integral calculus to be solved by simple geometric reasoning, without calculus or trigonometry. Mamikon’s Theorem states that *`The area of a tangent sweep of a curve is equal to the area of its tangent cluster’.* We shall illustrate how this theorem can help to solve a range of integration problems.

Continue reading ‘Mamikon’s Visual Calculus and Hamilton’s Hodograph’

You must be logged in to post a comment.