Posts Tagged 'Analysis'

Fourier’s Wonderful Idea – II

Solving PDEs by a Roundabout Route


Joseph Fourier (1768-1830)

Joseph Fourier, born just 250 years ago, introduced a wonderful idea that revolutionized science and mathematics: any function or signal can be broken down into simple periodic sine-waves. Radio waves, micro-waves, infra-red radiation, visible light, ultraviolet light, X-rays and gamma rays are all forms of electromagnetic radiation, differing only in frequency  [TM136 or search for “thatsmaths” at].

Continue reading ‘Fourier’s Wonderful Idea – II’

Fourier’s Wonderful Idea – I

Breaking Complex Objects into Simple Pieces

“In a memorable session of the French Academy on the
21st of December 1807, the mathematician and engineer
Joseph Fourier announced a thesis which inaugurated a
new chapter in the history of mathematics. The claim of
Fourier appeared to the older members of the Academy,
including the great analyst Lagrange, entirely incredible.”



Joseph Fourier (1768-1830)

The above words open the Discourse on Fourier Series, written by Cornelius Lanczos. What greatly surprised and shocked Lagrange and the other academicians was the claim of Fourier that an arbitrary function, defined by an arbitrarily capricious graph, can always be resolved into a sum of pure sine and cosine functions. There was good reason to question Fourier’s theorem. Since sine functions are continuous and infinitely differentiable, it was assumed that any superposition of such functions would have the same properties. How could this assumption be reconciled with Fourier’s claim?

Continue reading ‘Fourier’s Wonderful Idea – I’

Subtract 0 and divide by 1

We all know that division by zero is a prohibited operation, and that ratios that reduce to “zero divided by zero” are indeterminate. We probably also recall proving in elementary calculus class that

\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{x} = 1

This is an essential step in deriving an expression for the derivative of {\sin x}.


Continue reading ‘Subtract 0 and divide by 1’

The Evolute: Envelope of Normals

Every curve in the plane has several other curves associated with it. One of the most interesting and important of these is the evolute.


Sin t (blue) and its evolute (red).

Continue reading ‘The Evolute: Envelope of Normals’

Torricelli’s Trumpet & the Painter’s Paradox



Torricelli’s Trumpet


Evangelista Torricelli, a student of Galileo, is remembered as the inventor of the barometer. He was also a talented mathematician and he discovered the remarkable properties of a simple geometric surface, now often called Torricelli’s Trumpet. It is the surface generated when the curve {y=1/x} for {x\ge1} is rotated in 3-space about the x-axis.

Continue reading ‘Torricelli’s Trumpet & the Painter’s Paradox’

Enigmas of Infinity

Children sometimes amuse themselves searching for the biggest number. After trying millions, billions and trillions, they realize that there is no end to the game: however big a number may be, we can always add 1 to produce a bigger number: the set of counting numbers is infinite. The concept of infinity has intrigued philosophers since antiquity, and it leads to many surprises and paradoxical results [TM110 or search for “thatsmaths” at]. 


Continue reading ‘Enigmas of Infinity’

Taylor Expansions from India


NPG 1920; Brook Taylor probably by Louis Goupy

FIg. 1: Brook Taylor (1685-1731). Image from NPG.

The English mathematician Brook Taylor (1685-1731) introduced the calculus of finite differences in his Methodus Incrementorum Directa et Inversa, published in 1715. This work contained the famous formula known today as Taylor’s formula. In 1772, Lagrange described it as “the main foundation of differential calculus” (Wikipedia: Brook Taylor). Taylor also wrote a treatise on linear perspective (see Fig. 1).

It is noteworthy that the series for {\sin x}, {\cos x} and {\arctan x} were known to mathematicians in India about 400 years before Taylor’s time.
Continue reading ‘Taylor Expansions from India’

Last 50 Posts