Posts Tagged 'Analysis'

Elliptic Trigonometry: Fun with “sun”, “cun” and “dun”


The circular functions arise from ratios of lengths in a circle. In a similar manner, the elliptic functions can be defined by means of ratios of lengths in an ellipse. Many of the key properties of the elliptic functions follow from simple geometric properties of the ellipse.

Originally, Carl Gustav Jacobi defined the elliptic functions {\mathop\mathrm{sn} u}, {\mathop\mathrm{cn} u}, {\mathop\mathrm{dn} u} using the integral

\displaystyle u = \int_0^{\phi} \frac{\mathrm{d}\phi}{\sqrt{1-k^2\sin^2\phi}} \,.

He called {\phi} the amplitude and wrote {\phi = \mathop\mathrm{am} u}. It can be difficult to understand what motivated his definitions. We will define the elliptic functions {\mathop\mathrm{sn} u}, {\mathop\mathrm{cn} u}, {\mathop\mathrm{dn} u} in a more intuitive way, as simple ratios associated with an ellipse.

Continue reading ‘Elliptic Trigonometry: Fun with “sun”, “cun” and “dun”’

Some Fundamental Theorems of Maths

Every branch of mathematics has key results that are so
important that they are dubbed fundamental theorems.

The customary view of mathematical research is that of establishing the truth of propositions or theorems by rigorous deduction from axioms and definitions. Mathematics is founded upon axioms, basic assumptions that are taken as true. Logical reasoning is then used to deduce the consequences of those axioms with each major result designated as a theorem.

As each new theorem is proved, it provides a basis for the establishment of further results. The most important and fruitful theorem in each area of maths is often named as the fundamental theorem of that area. Thus, we have the fundamental theorems of arithmetic, algebra and so on. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus.

Continue reading ‘Some Fundamental Theorems of Maths’

The Wonders of Complex Analysis


Augustin-Louis Cauchy (1789–1857)

If you love mathematics and have never studied complex function theory, then you are missing something wonderful. It is one of the most beautiful branches of maths, with many amazing results. Don’t be put off by the name: complex does not mean complicated. With elementary calculus and a basic knowledge of imaginary numbers, a whole world of wonder is within your grasp.

In the early nineteenth century, Augustin-Louis Cauchy (1789–1857) constructed the foundations of what became a major new branch of mathematics, the theory of functions of a complex variable.

Continue reading ‘The Wonders of Complex Analysis’

Zeroing in on Zeros

Given a function {f(x)} of a real variable, we often have to find the values of {x} for which the function is zero. A simple iterative method was devised by Isaac Newton and refined by Joseph Raphson. It is known either as Newton’s method or as the Newton-Raphson method. It usually produces highly accurate approximations to the roots of the equation {f(x) = 0}.


A rational function with five real zeros and a pole at x = 1.

Continue reading ‘Zeroing in on Zeros’

Bernard Bolzano, a Voice Crying in the Wilderness


Bernard Bolzano (1781-1848)

Bernard Bolzano, born in Prague in 1781, was a Bohemian mathematician with Italian origins. Bolzano made several profound advances in mathematics that were not well publicized. As a result, his mathematical work was overlooked, often for many decades after his death. For example, his construction of a function that is continuous on an interval but nowhere differentiable, did not become known. Thus, the credit still goes to Karl Weierstrass, who found such a function about 30 years later. Boyer and Merzbach described Bolzano as “a voice crying in the wilderness,” since so many of his results had to be rediscovered by other workers.

Continue reading ‘Bernard Bolzano, a Voice Crying in the Wilderness’

Really, 0.999999… is equal to 1. Surreally, this is not so!

The value of the recurring decimal 0.999999 … is a popular topic of conversation amongst amateur mathematicians of various levels of knowledge and expertise. Some of the discussions on the web are of little value or interest, but the topic touches on several subtle and deep aspects of number theory.


[Image Wikimedia Commons]

Continue reading ‘Really, 0.999999… is equal to 1. Surreally, this is not so!’

Grandi’s Series: A Second Look

In an earlier post, we discussed Grandi’s series, originally studied by the Italian monk Dom Guido Grandi around 1703. It is the series

\displaystyle G = 1 - 1 + 1 - 1 + 1 - 1 + \dots

This is a divergent series: the sequence of partial sums is {\{ 1, 0, 1, 0, 1, 0, \dots \}}, which obviously does not converge, but alternates between {0} and {1}.

Continue reading ‘Grandi’s Series: A Second Look’

Last 50 Posts