Maths in the Time of the Pharaohs

Why would the Ancient Egyptians have any interest in or need for mathematics? There are many reasons. They had a well-organised and developed civilisation extending over millennia. Science and maths must have played important or even essential roles in this culture. They needed measurement for land surveying and for designing irrigation canals, arithmetic for accounting … Continue reading Maths in the Time of the Pharaohs

Herman Melville and Ishmael’s Cycloid

Many authors use mathematical metaphors with great effect. A recent book, “Once Upon A Prime” by Sarah Hart, describes the wondrous connections between mathematics and literature. As a particular example, she discusses the relevance of the cycloid curve in the work of Herman Melville. The book Moby-Dick, first published in 1851, opens with the words … Continue reading Herman Melville and Ishmael’s Cycloid

The Waffle Cone and a new Proof of Pythagoras’ Theorem

Jackson an' Johnson / Murphy an' Bronson / One by one dey come / An' one by one to dreamland dey go. [From Carmen Jones.  Lyrics: Oscar Hammerstein] Two young high-school students from New Orleans, Ne’Kiya Jackson and Calcea Johnson, recently presented a new proof of the Pythagorean theorem at a meeting of the American … Continue reading The Waffle Cone and a new Proof of Pythagoras’ Theorem

Dynamic Equations for Weather and Climate

``I could have done it in a much more complicated way'', said the Red Queen, immensely proud. --- Lewis Carroll. Books on dynamic meteorology and oceanography usually have a full chapter devoted to the basic dynamical equations. Since the Earth's fluid envelop is approximately a thin spherical shell, spherical coordinates $latex {(\lambda,\varphi, r)}&fg=000000$ are convenient. … Continue reading Dynamic Equations for Weather and Climate

Poincare’s Square and Unbounded Gomoku

Henri Poincar'e was masterful in presenting scientific concepts and ideas in an accessible way. To explain that the Universe might be bounded and yet infinite, he imagined that the temperature of space decreased from the centre to the periphery in such a way that everything contracted with the distance from the centre. As travellers moved … Continue reading Poincare’s Square and Unbounded Gomoku

A Finite but Unbounded Universe

Henri Poincaré described a beautiful geometric model with some intriguing properties. He envisioned a circular disk in the Euclidean plane, where distances were distorted to give it geometric properties quite different from those of Euclid's Elements. He supposed that the temperature varied linearly from a fixed value at the centre of the disk to absolute … Continue reading A Finite but Unbounded Universe

The Whole is Greater than the Part — Or is it?

Euclid flourished about fifty years after Aristotle and was certainly familiar with Aristotle's Logic.  Euclid's organization of the work of earlier geometers was truly innovative. His results depended upon basic assumptions, called axioms and “common notions”. There are in total 23 definitions, five axioms and five common notions in The Elements. The axioms, or postulates, … Continue reading The Whole is Greater than the Part — Or is it?

Buffon’s Noodle and the Mathematics of Hillwalking  

In addition to some beautiful photos and maps and descriptions of upland challenges in Ireland and abroad, the November issue of The Summit, the Mountain Views Quarterly Newsletter for hikers and hillwalkers, describes a method to find the length of a walk based on ideas originating with the French naturalist and mathematician George-Louis Leclerc, Comte … Continue reading Buffon’s Noodle and the Mathematics of Hillwalking  

Multi-faceted aspects of Euclid’s Elements

Euclid’s Elements was the first major work to organise mathematics as an axiomatic system. Starting from a set of clearly-stated and self-evident truths called axioms, a large collection of theorems is constructed by logical reasoning. For some, the Elements is a magnificent triumph of human thought; for others, it is a tedious tome, painfully prolix … Continue reading Multi-faceted aspects of Euclid’s Elements

A Model for Elliptic Geometry

For many centuries, mathematicians struggled to derive Euclid's fifth postulate as a theorem following from the other axioms. All attempts failed and, in the early nineteenth century, three mathematicians, working independently, found that consistent geometries could be constructed without the fifth postulate. Carl Friedrich Gauss (c. 1813) was first, but he published nothing on the … Continue reading A Model for Elliptic Geometry

From Impossible Shapes to the Nobel Prize

Roger Penrose, British mathematical physicist, mathematician and philosopher of science has just been named as one of the winners of the 2020 Nobel Prize in Physics. Penrose has made major contributions to general relativity and cosmology. Penrose has also come up with some ingenious mathematical inventions. He discovered a way of defining a pseudo-inverse for … Continue reading From Impossible Shapes to the Nobel Prize

Changing the way that we look at the world

Albrecht Dürer was born in Nuremberg in 1471, third of a family of eighteen children. Were he still living, he would be celebrating his 549th birthday today. Dürer's artistic genius was clear from an early age, as evidenced by a self-portrait he painted when just thirteen [TM187; or search for “thatsmaths” at irishtimes.com ]. In 1494, … Continue reading Changing the way that we look at the world

A New Perspective on Perspective

The development of perspective in the early Italian Renaissance opened the doors of perception just a little wider. Perspective techniques enabled artists to create strikingly realistic images. Among the most notable were Piero della Francesca and Leon Battista Alberti, who invented the method of perspective drawing. For centuries, artists have painted scenes on a sheet … Continue reading A New Perspective on Perspective

Archimedes and the Volume of a Sphere

One of the most remarkable and important mathematical results obtained by Archimedes was the determination of the volume of a sphere. Archimedes used a technique of sub-dividing the volume into slices of known cross-sectional area and adding up, or integrating, the volumes of the slices. This was essentially an application of a technique that was … Continue reading Archimedes and the Volume of a Sphere

Some Fundamental Theorems of Maths

Every branch of mathematics has key results that are so important that they are dubbed fundamental theorems. The customary view of mathematical research is that of establishing the truth of propositions or theorems by rigorous deduction from axioms and definitions. Mathematics is founded upon axioms, basic assumptions that are taken as true. Logical reasoning is … Continue reading Some Fundamental Theorems of Maths

Gaussian Curvature: the Theorema Egregium

One of greatest achievements of Carl Friedrich Gauss was a theorem so startling that he gave it the name Theorema Egregium or outstanding theorem. In 1828 he published his ``Disquisitiones generales circa superficies curvas'', or General investigation of curved surfaces. Gauss defined a quantity that measures the curvature of a two-dimensional surface. He was inspired by … Continue reading Gaussian Curvature: the Theorema Egregium

A Glowing Geometric Proof that Root-2 is Irrational

It was a great shock to the Pythagoreans to discover that the diagonal of a unit square could not be expressed as a ratio of whole numbers. This discovery represented a fundamental fracture between the mathematical domains of Arithmetic and Geometry: since the Greeks recognized only whole numbers and ratios of whole numbers, the result … Continue reading A Glowing Geometric Proof that Root-2 is Irrational

The Evolute: Envelope of Normals

Every curve in the plane has several other curves associated with it. One of the most interesting and important of these is the evolute. Suppose the curve $latex {\gamma}&fg=000000$ is specified in parametric form $latex {(x(t), y(t))}&fg=000000$ for $latex {t \in [0,1]}&fg=000000$. The centre of curvature $latex {\Gamma = (X, Y)}&fg=000000$ at a particular point … Continue reading The Evolute: Envelope of Normals

A Symbol for Global Circulation

The recycling symbol consisting of three bent arrows is found on bottles, cartons and packaging of all kinds. It originated in 1970 when the Chicago-based Container Corporation of America (CCA) held a competition for the design of a symbol suitable for printing on cartons, to encourage recycling and re-use of packaging materials. The competition for … Continue reading A Symbol for Global Circulation