Geodesy is the study of the shape and size of the Earth, and of variations in its gravitational field. The Earth was originally believed to be flat, but many clues, such as the manner in which ships appear and disappear at the horizon, and the changed perspective from an elevated vantage point, as well as astronomical phenomena, convinced savants of its spherical shape. In the third century BC, Eratosthenes accurately estimated the circumference of the Earth [TM137 or search for “thatsmaths” at irishtimes.com].

## Posts Tagged 'Geometry'

### The Evolute: Envelope of Normals

Published February 22, 2018 Occasional Leave a CommentTags: Analysis, Geometry

Every curve in the plane has several other curves associated with it. One of the most interesting and important of these is the evolute.

The circle of fifths is a remarkably useful diagram for the analysis of music. It shows the twelve notes of the chromatic scale arranged in a circle, with notes that are harmonically related (like C and G) being close together and notes that are discordant (like C and C♯) more distant from each other.

We all know that the area of a disk — the interior of a circle — is where is the radius. Some of us may also remember that the volume of a ball — the interior of a sphere — is .

### A Symbol for Global Circulation

Published November 23, 2017 Occasional Leave a CommentTags: Geometry, Topology

The recycling symbol consisting of three bent arrows is found on bottles, cartons and packaging of all kinds. It originated in 1970 when the Chicago-based Container Corporation of America (CCA) held a competition for the design of a symbol suitable for printing on cartons, to encourage recycling and re-use of packaging materials.

Sometimes the “obvious” answer to a mathematical problem is not the correct one. The case of Malfatti’s circles is an example of this. In an equilateral triangle of unit side length, we must draw three non-overlapping circles such that the total area of the circles is maximal.

The solution seems obvious: draw three identical circles, each one tangent to two sides and to the other two circles (above figure, left). This is certainly the most symmetric arrangement possible. However, it turns out not to be the optimal solution. There is another arrangement (above figure, right) for which the three circles have greater total area.