Posts Tagged 'History'

Quadrivium: The Noble Fourfold Way

According to Plato, a core of mathematical knowledge – later known as the Quadrivium – was essential for an understanding of the Universe. The curriculum was outlined in Plato’s Republic. The name Quadrivium means four ways, but this term was not used until the time of Boethius in the 6th century AD [see TM119 or search for “thatsmaths” at irishtimes.com].

Quadrivium-Book

Image from here.

It is said that an inscription over the entrance to Plato’s Academy read “Let None But Geometers Enter Here”. This indicated that the Quadrivium was a prerequisite for the study of philosophy in ancient Greece.

Continue reading ‘Quadrivium: The Noble Fourfold Way’

Robert Murphy, a “Brilliant Meteor”

A brilliant meteor that flared intensely but all too briefly”; this was how Des MacHale described the Cork-born mathematician Robert Murphy in his biography of George Boole, first professor of mathematics in Cork. Murphy was a strong influence on Boole, who quoted liberally from his publications [see TM118 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘Robert Murphy, a “Brilliant Meteor”’

Patterns in Poetry, Music and Morse Code

Suppose we have to ascent a flight of stairs and can take only one or two steps at a time. How many different patterns of ascent are there? We start with the simplest cases. With one step there is only one way; with two, there are two: take two single steps or one double step. With three steps, there are three possibilities. We can now proceed in an inductive manner.

Staircase-01

Continue reading ‘Patterns in Poetry, Music and Morse Code’

Enigmas of Infinity

Children sometimes amuse themselves searching for the biggest number. After trying millions, billions and trillions, they realize that there is no end to the game: however big a number may be, we can always add 1 to produce a bigger number: the set of counting numbers is infinite. The concept of infinity has intrigued philosophers since antiquity, and it leads to many surprises and paradoxical results [TM110 or search for “thatsmaths” at irishtimes.com]. 

infinity-symbols

Continue reading ‘Enigmas of Infinity’

The Beginning of Modern Mathematics

The late fifteenth century was an exciting time in Europe. Western civilization woke with a start after the slumbers of the medieval age. Johannes Gutenberg’s printing press arrived in 1450 and changed everything. Universities in Bologna, Oxford, Salamanca, Paris and elsewhere began to flourish. Leonardo da Vinci was in his prime and Christopher Columbus was discovering a new world.

davinci-dodecahedron

Illustrations by Leonardo da Vinci in Pacioli’s De Divina Proportione.

Continue reading ‘The Beginning of Modern Mathematics’

The Edward Worth Library: a Treasure Trove of Maths

Infinite Riches in a Little Room.  Christopher Marlowe.

The Edward Worth Library may be unknown to many readers. Housed in Dr Steevens’ Hospital, Dublin, now an administrative centre for the Health Service Executive, the library was collected by hospital Trustee Edward Worth, and bequeathed to the hospital after his death in 1733. The original book shelves and cases remain as they were in the 1730s. The collection is catalogued online. [TM105 or search for “thatsmaths” at irishtimes.com].

edworthlib-banner

Continue reading ‘The Edward Worth Library: a Treasure Trove of Maths’

Raphael Bombelli’s Psychedelic Leap

The story of how Italian Renaissance mathematicians solved cubic equations has elements of skullduggery and intrigue. The method originally found by Scipione del Ferro and independently by Tartaglia, was published by Girolamo Cardano in 1545 in his book Ars Magna. The method, often called Cardano’s method, gives the solution of a depressed cubic equation t3 + p t + q = 0. The general cubic equation can be reduced to this form by a simple linear transformation of the dependent variable. The solution is given by

cardano-formula

Cardano assumed that the discriminant Δ = ( q / 2 )2 + ( p / 3 )3, the quantity appearing under the square-root sign, was positive.

Raphael Bombelli made the psychedelic leap that Cardano could not make. He realised that Cardano’s formula would still give a solution when the discriminant was negative, provided that the square roots of negative quantities were manipulated in the correct manner. He was thus the first to properly handle complex numbers and apply them with effect.

Continue reading ‘Raphael Bombelli’s Psychedelic Leap’


Last 50 Posts

Categories