A few weeks ago, I wrote about Hyperreals and Nonstandard Analysis , promising to revisit the topic. Here comes round two.
Continue reading ‘Infinitesimals: vanishingly small but not quite zero’
Follow on twitter: @thatsmaths
A few weeks ago, I wrote about Hyperreals and Nonstandard Analysis , promising to revisit the topic. Here comes round two.
Continue reading ‘Infinitesimals: vanishingly small but not quite zero’
In his scientific best-seller, A Brief History of Time, Stephen Hawking remarked that every equation he included would halve sales of the book, so he put only one in it, Einstein’s equation relating mass and energy, E = mc2. This cynical view is a disservice to science; we should realize that, far from being inimical, equations are our friends [TM228 or search for “thatsmaths” at irishtimes.com].
The great Swiss mathematician Leonhard Euler produced profound and abundant mathematical works. Publication of his Opera Omnia began in 1911 and, with close to 100 volumes in print, it is nearing completion. Although he published several successful mathematical textbooks, the book that attracted the widest readership was not a mathematical work, but a collection of letters [TM227 or search for “thatsmaths” at irishtimes.com].
For several years, starting in 1760, Euler wrote a series of letters to Friederike Charlotte, Princess of Brandenburg-Schwedt, a niece of Frederick the Great of Prussia. The collection of 234 letters was first published in French, the language of the nobility, as Lettres à une Princesse d’Allemagne. This remarkably successful popularisation of science appeared in many editions, in several languages, and was widely read. Subtitled “On various subjects in physics and philosophy”, the first two of three volumes were published in 1768 by the Imperial Academy of Sciences in St. Petersburg, with the support of the empress, Catherine II.
Continue reading ‘Letters to a German Princess: Euler’s Blockbuster Lives On’
It all began with an invitation to Leonhard Euler to accept a chair of mathematics at the new Imperial Academy of Science in the city founded by Peter the Great. Euler’s journey from Basel to Saint Petersburg was a highly influential factor for the development of the mathematical sciences. The journey is described in detail in a full-length biography of Euler by Ronald Calinger (2016). The account below is heavily dependent on Calinger’s book.
Swiss postage stamp, issued in 1994 for the International Congress of Mathematicians in Zurich, featuring Jakob Bernoulli and illustrating his “golden theorem”.
Jakob Bernoulli, head of a dynasty of brilliant scholars, was one of the world’s leading mathematicians. Bernoulli’s great work, Ars Conjectandi, published in 1713, included a profound result that he established “after having meditated on it for twenty years”. He called it his “golden theorem”. It is known today as the law of large numbers, and it was the first limit theorem in probability, and the first attempt to apply probability outside the realm of games of chance [TM225 or search for “thatsmaths” at irishtimes.com].
Continue reading ‘Bernoulli’s Golden Theorem and the Law of Large Numbers’
A remarkable French natural philosopher and mathematician who lived in the early eighteenth century, Émilie Du Châtalet, is generally remembered for her translation of Isaac Newton’s Principia Mathematica, but her work was much more than a simple translation: she added an extensive commentary in which she included new developments in mechanics, the most important being her formulation of the principle of conservation of energy [TM223 or search for “thatsmaths” at irishtimes.com].
Continue reading ‘Émilie Du Châtelet and the Conservation of Energy’
Edna St Vincent Millay’s sonnet “Euclid alone has looked on beauty bare” evokes the ethereal, otherworldly quality of mathematics. Scandalous behaviour is not usually associated with mathematicians, but they are human: pride, overblown ego and thirst for fame have led to skulduggery, plagiarism and even murder. Some of the more egregious scandals are reviewed here [TM221 or search for “thatsmaths” at irishtimes.com].
Abu Rayhan al-Biruni (AD 973–1048)
The 11th century Persian mathematician Abu Rayhan al-Biruni used simple trigonometric results to estimate the radius and circumference of the Earth. His estimate has been quoted as 6,340 km, which is within 1% of the mean radius of 6,371 km. While al-Biruni’s method was brilliant and, for its era, spectacular, the accuracy claimed must be regarded with suspicion.
Al-Biruni assumed that the Earth is a perfect sphere of (unknown) radius . He realised that because of the Earth’s curvature the horizon, as viewed from a mountain-top, would appear to be below the horizontal direction. This direction is easily obtained as being orthogonal to the vertical, which is indicated by a plumb line.
In a famous lecture in 1959, scientist and author C P Snow spoke of a gulf of comprehension between science and the humanities, which had become split into “two cultures”. Many people in each group had a lack of appreciation of the concerns of the other group, causing grave misunderstandings and making the world’s problems more difficult to solve. Snow compared ignorance of the Second Law of Thermodynamics to ignorance of Shakespeare [TM209 or search for “thatsmaths” at irishtimes.com].
Continue reading ‘Entropy and the Relentless Drift from Order to Chaos’
Samuel Haughton (1821-1897).
Samuel Haughton was born in Co. Carlow in 1821. He entered Trinity College Dublin aged just sixteen and graduated in 1843. He was elected a fellow in 1844 and was appointed professor of geology in 1851. He took up the study of medicine and graduated as a Doctor of Medicine in 1862, aged 40 [TM182 or search for “thatsmaths” at irishtimes.com].
In addition to his expertise in geology and medicine, Haughton was a highly talented applied mathematician. His mathematical investigations included the study of the motion of solid and fluid bodies, solar radiation, climatology, animal mechanics and ocean tides. One of his more bizarre applications of mathematics was to demonstrate a humane method of execution by hanging, by lengthening the drop to ensure instant death.
When a guitar string is plucked, we don’t see waves travelling along the string. This is because the ends are fixed. Instead, we see a standing-wave pattern. Standing waves are also found on drum-heads and on the sound-boxes of violins. The shape of a violin strongly affects the quality and purity of the sound, as it determines the mixture of standing wave harmonics that it can sustain [TM179 or search for “thatsmaths” at irishtimes.com].
French postage stamp, issued in 2016, to commemorate the
250th anniversary of the birth of Sophie Germain (1776-1831).
Continue reading ‘The “extraordinary talent and superior genius” of Sophie Germain’
No one person can have mastery of the entirety of mathematics. The subject has become so vast that the best that can be achieved is a general understanding and appreciation of the main branches together with expertise in one or two areas [TM174 or search for “thatsmaths” at irishtimes.com].
The Princeton Companions to Maths and Applied Maths
Continue reading ‘The Vastness of Mathematics: No One Knows it All’
Given a function of a real variable, we often have to find the values of
for which the function is zero. A simple iterative method was devised by Isaac Newton and refined by Joseph Raphson. It is known either as Newton’s method or as the Newton-Raphson method. It usually produces highly accurate approximations to the roots of the equation
.
A rational function with five real zeros and a pole at x = 1.
George Salmon (1819-1904) [Image: MacTutor]
As you pass through the main entrance of Trinity College, the iconic campanile stands before you, flanked, in pleasing symmetry, by two life-size statues. On the right, on a granite plinth is the historian and essayist William Lecky. On the left, George Salmon (1819–1904) sits on a limestone platform.
Salmon was a distinguished mathematician and theologian and Provost of Trinity College. For decades, the two scholars have gazed down upon multitudes of students crossing Front Square. The life-size statue of Salmon, carved from Galway marble by the celebrated Irish sculptor John Hughes, was erected in 1911. Next Wednesday will be the 200th anniversary of Salmon’s birth [TM171 or search for “thatsmaths” at irishtimes.com].
Continue reading ‘George Salmon, Mathematician & Theologian’
On the morning of 30 May 1832 a young man stood twenty-five paces from his friend. Both men fired, but only one pistol was loaded. Évariste Galois, a twenty year old mathematical genius, fell to the ground. The cause of Galois’s death is veiled in mystery and speculation. Whether both men loved the same woman or had irreconcilable political differences is unclear. But Galois was abandoned, mortally wounded, on the duelling ground at Gentilly, just south of Paris. By noon the next day he was dead [TM169 or search for “Galois” at irishtimes.com].
French postage stamp issued in 1984.
Continue reading ‘The Brief and Tragic Life of Évariste Galois’
Next Tuesday, the 30th of August, is the 200th anniversary of the birth of George Gabriel Stokes. This extended blog post is to mark that occasion. See also an article in The Irish Times.
The ancient Romans developed many new techniques for engineering and architecture. The citizens of Rome enjoyed fountains, public baths, central heating, underground sewage systems and public toilets. All right, but apart from sanitation, medicine, education, irrigation, roads and aqueducts, what did the Romans ever do for maths? [TM166 or search for “thatsmaths” at irishtimes.com].
Roman aqueduct at Segovia, Spain.
“Typus Arithmeticae” is a woodcut from the book Margarita Philosophica by Gregor Reisch of Freiburg, published in 1503. In the centre of the figure stands Arithmetica, the muse of mathematics. She is watching a competition between the Roman mathematician Boethius and the great Pythagoras. Boethius is crunching out a calculation using Hindu-Arabic numerals, while Pythagoras uses a counting board or abacus (tabula) and – presumably – a less convenient number system. Arithmetica is looking with favour towards Boethius. He smiles smugly while Pythagoras is looking decidedly glum.
The figure aims to show the superiority of the Hindu-Arabic number system over the older Greek and Roman number systems. Of course, it is completely anachronistic: Pythagoras flourished around 500 BC and Boethius around AD 500, while the Hindu-Arabic numbers did not arrive in Europe until after AD 1200.
Bernard Bolzano (1781-1848)
Bernard Bolzano, born in Prague in 1781, was a Bohemian mathematician with Italian origins. Bolzano made several profound advances in mathematics that were not well publicized. As a result, his mathematical work was overlooked, often for many decades after his death. For example, his construction of a function that is continuous on an interval but nowhere differentiable, did not become known. Thus, the credit still goes to Karl Weierstrass, who found such a function about 30 years later. Boyer and Merzbach described Bolzano as “a voice crying in the wilderness,” since so many of his results had to be rediscovered by other workers.
Continue reading ‘Bernard Bolzano, a Voice Crying in the Wilderness’
Sonya Kovalevskya (1850-1891)
The influential collection of biographical essays by Eric Temple Bell, Men of Mathematics, was published in 1937. It covered the lives of about forty mathematicians, from ancient times to the beginning of the twentieth century. The book inspired many boys to become mathematicians. However, it seems unlikely that it inspired many girls: the only woman to get more than a passing mention was Sofia Kovalevskaya, a brilliant Russian mathematician and the first woman to obtain a doctorate in mathematics [TM163 or search for “thatsmaths” at irishtimes.com].
Continue reading ‘The Rise and Rise of Women in Mathematics’
Do amateurs ever solve outstanding mathematical problems? Professional mathematicians are aware that almost every new idea they have about a mathematical problem has already occurred to others. Any really new idea must have some feature that explains why no one has thought of it before [TM155 or search for “thatsmaths” at irishtimes.com].
Pierre de Fermat and Srinivasa Ramanujan, two brilliant “amateur” mathematicians.
Continue reading ‘Discoveries by Amateurs and Distractions by Cranks’
A fascinating parallel between a brilliant mathematician and an arch-villain of crime fiction is drawn in a forthcoming book – New Light on George Boole – by Des MacHale and Yvonne Cohen. Professor James Moriarty, master criminal and nemesis of Sherlock Holmes, was described by the detective as “the Napoleon of crime”. The book presents convincing evidence that Moriarty was inspired by Professor George Boole [TM151, or search for “thatsmaths” at irishtimes.com].
Continue reading ‘The “Napoleon of Crime” and The Laws of Thought’
In an earlier post, we discussed Grandi’s series, originally studied by the Italian monk Dom Guido Grandi around 1703. It is the series
This is a divergent series: the sequence of partial sums is , which obviously does not converge, but alternates between
and
.
Is the Light On or Off?
Suppose a light is switched on for a half-minute, off for a quarter minute, on for one eighth of a minute and so on until precisely one minute has elapsed. Is the light on or off at the end of this (infinite) process? Representing the two states “on” and “off” by and
, the sequence of states over the first minute is
. But how do we ascertain the final state from this sequence? This question is sometimes known as Thomson’s Lamp Puzzle.
The Parthenon is a masterpiece of symmetry and proportion. This temple to the Goddess Athena was built with pure white marble quarried at Pentelikon, about 20km from Athens. It was erected without mortar or cement, the stones being carved to great accuracy and locked together by iron clamps. The building and sculptures were completed in just 15 years, between 447 and 432 BC. [TM141 or search for “thatsmaths” at irishtimes.com].
The new Winton Gallery at London’s Science Museum in South Kensington holds a permanent display on the history of mathematics over the past 400 years. The exhibition shows how mathematics has underpinned astronomy, navigation and surveying in the past, and how it continues to pervade the modern world [see TM139, or search for “thatsmaths” at irishtimes.com].
Central Display at the Science Museum
Solving PDEs by a Roundabout Route
Joseph Fourier (1768-1830)
Joseph Fourier, born just 250 years ago, introduced a wonderful idea that revolutionized science and mathematics: any function or signal can be broken down into simple periodic sine-waves. Radio waves, micro-waves, infra-red radiation, visible light, ultraviolet light, X-rays and gamma rays are all forms of electromagnetic radiation, differing only in frequency [TM136 or search for “thatsmaths” at irishtimes.com].
Breaking Complex Objects into Simple Pieces
“In a memorable session of the French Academy on the
21st of December 1807, the mathematician and engineer
Joseph Fourier announced a thesis which inaugurated a
new chapter in the history of mathematics. The claim of
Fourier appeared to the older members of the Academy,
including the great analyst Lagrange, entirely incredible.”
Introduction
Joseph Fourier (1768-1830)
The above words open the Discourse on Fourier Series, written by Cornelius Lanczos. What greatly surprised and shocked Lagrange and the other academicians was the claim of Fourier that an arbitrary function, defined by an arbitrarily capricious graph, can always be resolved into a sum of pure sine and cosine functions. There was good reason to question Fourier’s theorem. Since sine functions are continuous and infinitely differentiable, it was assumed that any superposition of such functions would have the same properties. How could this assumption be reconciled with Fourier’s claim?
Solution of a cubic equation, usually called Cardano’s formula.
Babylonian mathematicians knew how to solve simple polynomial equations, in which the unknown quantity that we like to call x enters in the form of powers, that is, x multiplied repeatedly by itself. When only x appears, we have a linear equation. If x-squared enters, we have a quadratic. The third power of x yields a cubic equation, the fourth power a quartic and so on [TM135 or search for “thatsmaths” at irishtimes.com].
We all know that division by zero is a prohibited operation, and that ratios that reduce to “zero divided by zero” are indeterminate. We probably also recall proving in elementary calculus class that
This is an essential step in deriving an expression for the derivative of .
In 1971, astronaut David Scott, standing on the Moon, dropped a hammer and a feather and found that both reached the surface at the same time. This popular experiment during the Apollo 15 mission was a dramatic demonstration of a prediction made by Galileo three centuries earlier. Galileo was born in Pisa on 15 February 1564, just 454 years ago today [TM133 or search for “thatsmaths” at irishtimes.com].
Image: NASA
Godfrey Harold Hardy’s memoir, A Mathematician’s Apology, was published when he was 63 years old. It is a slight volume at just 90 pages, but is replete with interesting observations and not a few controversial opinions. After 78 years, it is still in print and is available in virtually every mathematics library. Though many of Hardy’s opinions are difficult to support and some of his predictions have turned out to be utterly wrong, the book is still well worth reading.
According to Plato, a core of mathematical knowledge – later known as the Quadrivium – was essential for an understanding of the Universe. The curriculum was outlined in Plato’s Republic. The name Quadrivium means four ways, but this term was not used until the time of Boethius in the 6th century AD [see TM119 or search for “thatsmaths” at irishtimes.com].
Image from here.
It is said that an inscription over the entrance to Plato’s Academy read “Let None But Geometers Enter Here”. This indicated that the Quadrivium was a prerequisite for the study of philosophy in ancient Greece.
“A brilliant meteor that flared intensely but all too briefly”; this was how Des MacHale described the Cork-born mathematician Robert Murphy in his biography of George Boole, first professor of mathematics in Cork. Murphy was a strong influence on Boole, who quoted liberally from his publications [see TM118 or search for “thatsmaths” at irishtimes.com].
Suppose we have to ascent a flight of stairs and can take only one or two steps at a time. How many different patterns of ascent are there? We start with the simplest cases. With one step there is only one way; with two, there are two: take two single steps or one double step. With three steps, there are three possibilities. We can now proceed in an inductive manner.
Children sometimes amuse themselves searching for the biggest number. After trying millions, billions and trillions, they realize that there is no end to the game: however big a number may be, we can always add 1 to produce a bigger number: the set of counting numbers is infinite. The concept of infinity has intrigued philosophers since antiquity, and it leads to many surprises and paradoxical results [TM110 or search for “thatsmaths” at irishtimes.com].
The late fifteenth century was an exciting time in Europe. Western civilization woke with a start after the slumbers of the medieval age. Johannes Gutenberg’s printing press arrived in 1450 and changed everything. Universities in Bologna, Oxford, Salamanca, Paris and elsewhere began to flourish. Leonardo da Vinci was in his prime and Christopher Columbus was discovering a new world.
Illustrations by Leonardo da Vinci in Pacioli’s De Divina Proportione.
Infinite Riches in a Little Room. Christopher Marlowe.
The Edward Worth Library may be unknown to many readers. Housed in Dr Steevens’ Hospital, Dublin, now an administrative centre for the Health Service Executive, the library was collected by hospital Trustee Edward Worth, and bequeathed to the hospital after his death in 1733. The original book shelves and cases remain as they were in the 1730s. The collection is catalogued online. [TM105 or search for “thatsmaths” at irishtimes.com].
Continue reading ‘The Edward Worth Library: a Treasure Trove of Maths’
The story of how Italian Renaissance mathematicians solved cubic equations has elements of skullduggery and intrigue. The method originally found by Scipione del Ferro and independently by Tartaglia, was published by Girolamo Cardano in 1545 in his book Ars Magna. The method, often called Cardano’s method, gives the solution of a depressed cubic equation t3 + p t + q = 0. The general cubic equation can be reduced to this form by a simple linear transformation of the dependent variable. The solution is given by
Cardano assumed that the discriminant Δ = ( q / 2 )2 + ( p / 3 )3, the quantity appearing under the square-root sign, was positive.
Raphael Bombelli made the psychedelic leap that Cardano could not make. He realised that Cardano’s formula would still give a solution when the discriminant was negative, provided that the square roots of negative quantities were manipulated in the correct manner. He was thus the first to properly handle complex numbers and apply them with effect.
FIg. 1: Brook Taylor (1685-1731). Image from NPG.
The English mathematician Brook Taylor (1685-1731) introduced the calculus of finite differences in his Methodus Incrementorum Directa et Inversa, published in 1715. This work contained the famous formula known today as Taylor’s formula. In 1772, Lagrange described it as “the main foundation of differential calculus” (Wikipedia: Brook Taylor). Taylor also wrote a treatise on linear perspective (see Fig. 1).
It is noteworthy that the series for ,
and
were known to mathematicians in India about 400 years before Taylor’s time.
Continue reading ‘Taylor Expansions from India’
Log tables, invaluable in science, industry and commerce for 350 years, have been consigned to the scrap heap. But logarithms remain at the core of science, as a wide range of physical phenomena follow logarithmic laws [TM103 or search for “thatsmaths” at irishtimes.com].
Android app RealCalc with natural and common log buttons indicated.
Johannes Kepler’s amazing book, Mysterium Cosmographicum, was published in 1596. Kepler’s central idea was that the distance relationships between the six planets (only six were known at that time) could be represented by six spheres separated by the five Platonic solids. For each of these regular polyhedra, there is an inner and an outer sphere. The inner sphere is tangent to the centre of each face and the outer sphere contains all the vertices of the polyhedron.
Figure generated using Mathematica Demonstration [2].
Continue reading ‘Kepler’s Magnificent Mysterium Cosmographicum’
William Rowan Hamilton was Ireland’s greatest mathematician. His name is heard thousands of times every day throughout the world when researchers use the Hamiltonian function that encapsulates the dynamics of a vast range of physical systems. He achieved fame early in life and remains one of the all-time great scientists. [TM099, or search for “thatsmaths” at irishtimes.com].
Whatever the weather, St Patrick’s Day occurs on the same date every year. In contrast, Easter springs back and forth in an apparently chaotic manner. The date on which the Resurrection is celebrated is determined by a complicated convolution of astronomy, mathematics and theology, an algorithm or recipe that fixes the date in accordance with the motions of the Sun and Moon [TM087, or search for “thatsmaths” at irishtimes.com].
Iona Abbey, the last Celtic monastery to hold out against Easter reform [Image Wikimedia Commons]
There is no Nobel Prize for mathematics, but there is a close equivalent: The prestigious Abel Medal is awarded every year for outstanding work in mathematics [TM086, or search for “thatsmaths” at irishtimes.com]. This years winner, or winners, will be announced soon.
When Alfred Nobel’s will appeared, the absence of any provision for a prize in mathematics gave rise to rumours of discord between Nobel and Gösta Mittag-Leffler, the leading Swedish mathematician of the day. They are without foundation, the truth being that Nobel had little interest in the subject, and probably didn’t appreciate the practical benefits of advanced mathematics.
Continue reading ‘The Abel Prize – The Nobel Prize for Mathematics’
Franc-carreau is a simple game of chance, like the roll-a-penny game often seen at fairs and fêtes. A coin is tossed or rolled down a wooden chute onto a large board ruled into square segments. If the player’s coin lands completely within a square, he or she wins a coin of equal value. If the coin crosses a dividing line, it is lost.
The playing board for Franc-Carreau is shown above, together with a winning coin (red) contained within a square and a loosing one (blue) crossing a line. As the precise translation of franc-carreau appears uncertain, the name “fair square” would seem appropriate.
The question is: What size should the coin be to ensure a 50% chance of winning?
The character of fluid flow depends on a dimensionless quantity, the Reynolds number. Named for Belfast-born scientist Osborne Reynolds, it determines whether the flow is laminar (smooth) or turbulent (rough). Normally the drag force increases with speed.
The Reynolds number is defined as Re = VL/ν where V is the flow speed, L the length scale and ν the viscosity coefficient. The transition from laminar to turbulent flow occurs at a critical value of Re which depends on details of the system, such as surface roughness.
The availability of large historical data sets online has spurred interest in genealogy and family history. Anyone who has assembled information knows how important it is to organize it systematically. A simple family tree showing the direct ancestors of Wanda One is shown here:
Albrecht Dürer, master painter and engraver of the German Renaissance, made his Melencolia I in 1514, just over five centuries ago. It is one of the most brilliant engravings of all time, and amongst the most intensively debated works of art [TM079; or search for “thatsmaths” at irishtimes.com ].
The winged figure, Melancholy, sits in a mood of lassitude and brooding dejection, weighed down by intellectual cares. Her head rests on her left hand while her right hand holds a mathematical compass, one of many symbols and motifs in the work that reflect Dürer’s interest in mathematics.
Continue reading ‘Melencolia: An Enigma for Half a Millennium’
You must be logged in to post a comment.