Posts Tagged 'History'

The “Napoleon of Crime” and The Laws of Thought

NewLightOnGBooleA fascinating parallel between a brilliant mathematician and an arch-villain of crime fiction is drawn in a forthcoming book – New Light on George Boole – by Des MacHale and Yvonne Cohen. Professor James Moriarty, master criminal and nemesis of Sherlock Holmes, was described by the detective as “the Napoleon of crime”. The book presents convincing evidence that Moriarty was inspired by Professor George Boole [TM151, or search for “thatsmaths” at irishtimes.com].

Continue reading ‘The “Napoleon of Crime” and The Laws of Thought’

Grandi’s Series: A Second Look

Grandis-Series
In an earlier post, we discussed Grandi’s series, originally studied by the Italian monk Dom Guido Grandi around 1703. It is the series

\displaystyle G = 1 - 1 + 1 - 1 + 1 - 1 + \dots

This is a divergent series: the sequence of partial sums is {\{ 1, 0, 1, 0, 1, 0, \dots \}}, which obviously does not converge, but alternates between {0} and {1}.

Continue reading ‘Grandi’s Series: A Second Look’

Grandi’s Series: Divergent but Summable

Is the Light On or Off?

Suppose a light is switched on for a half-minute, off for a quarter minute, on for one eighth of a minute and so on until precisely one minute has elapsed. Is the light on or off at the end of this (infinite) process? Representing the two states “on” and “off” by {1} and {0}, the sequence of states over the first minute is {\{ 1, 0, 1, 0, 1, 0, \dots \}}. But how do we ascertain the final state from this sequence? This question is sometimes known as Thomson’s Lamp Puzzle.

Grandis-Series

Continue reading ‘Grandi’s Series: Divergent but Summable’

Optical Refinements at the Parthenon

The Parthenon is a masterpiece of symmetry and proportion. This temple to the Goddess Athena was built with pure white marble quarried at Pentelikon, about 20km from Athens. It was erected without mortar or cement, the stones being carved to great accuracy and locked together by iron clamps. The building and sculptures were completed in just 15 years, between 447 and 432 BC. [TM141 or search for “thatsmaths” at irishtimes.com].

Parthenon-Photo

Continue reading ‘Optical Refinements at the Parthenon’

Mathematics at the Science Museum

The new Winton Gallery at London’s Science Museum in South Kensington holds a permanent display on the history of mathematics over the past 400 years. The exhibition shows how mathematics has underpinned astronomy, navigation and surveying in the past, and how it continues to pervade the modern world [see TM139, or search for “thatsmaths” at irishtimes.com].

HardingGallery

Central Display at the Science Museum

Continue reading ‘Mathematics at the Science Museum’

Fourier’s Wonderful Idea – II

Solving PDEs by a Roundabout Route

Fourier-3

Joseph Fourier (1768-1830)

Joseph Fourier, born just 250 years ago, introduced a wonderful idea that revolutionized science and mathematics: any function or signal can be broken down into simple periodic sine-waves. Radio waves, micro-waves, infra-red radiation, visible light, ultraviolet light, X-rays and gamma rays are all forms of electromagnetic radiation, differing only in frequency  [TM136 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘Fourier’s Wonderful Idea – II’

Fourier’s Wonderful Idea – I

Breaking Complex Objects into Simple Pieces

“In a memorable session of the French Academy on the
21st of December 1807, the mathematician and engineer
Joseph Fourier announced a thesis which inaugurated a
new chapter in the history of mathematics. The claim of
Fourier appeared to the older members of the Academy,
including the great analyst Lagrange, entirely incredible.”

Introduction

Fourier

Joseph Fourier (1768-1830)

The above words open the Discourse on Fourier Series, written by Cornelius Lanczos. What greatly surprised and shocked Lagrange and the other academicians was the claim of Fourier that an arbitrary function, defined by an arbitrarily capricious graph, can always be resolved into a sum of pure sine and cosine functions. There was good reason to question Fourier’s theorem. Since sine functions are continuous and infinitely differentiable, it was assumed that any superposition of such functions would have the same properties. How could this assumption be reconciled with Fourier’s claim?

Continue reading ‘Fourier’s Wonderful Idea – I’


Last 50 Posts

Categories