Posts Tagged 'Mechanics'

Cornelius Lanczos – Inspired by Hamilton’s Quaternions

Lanczos240In May 1954, Cornelius Lanczos took up a position as senior professor in the School of Theoretical Physics at the Dublin Institute for Advanced Studies (DIAS). The institute had been established in 1940 by Eamon de Valera, with a School of Theoretical Physics and a School of Celtic Studies, reflecting de Valera’s keen interest in mathematics and in the Irish language. Later, a School of Cosmic Physics was added. DIAS remains a significant international centre of research today [TM191 or search for “thatsmaths” at irishtimes.com].

Continue reading ‘Cornelius Lanczos – Inspired by Hamilton’s Quaternions’

A Ring of Water Shows the Earth’s Spin

Around 1913, while still an undergraduate, American physicist Arthur Compton described an experiment to demonstrate the rotation of the Earth using a simple laboratory apparatus.

Comptons-Generator-SciAm2

Continue reading ‘A Ring of Water Shows the Earth’s Spin’

The “extraordinary talent and superior genius” of Sophie Germain

When a guitar string is plucked, we don’t see waves travelling along the string. This is because the ends are fixed. Instead, we see a standing-wave pattern. Standing waves are also found on drum-heads and on the sound-boxes of violins. The shape of a violin strongly affects the quality and purity of the sound, as it determines the mixture of standing wave harmonics that it can sustain [TM179 or search for “thatsmaths” at irishtimes.com].

Sophie-Germain-Stamp

French postage stamp, issued in 2016, to commemorate the
250th anniversary of the birth of Sophie Germain (1776-1831).

Continue reading ‘The “extraordinary talent and superior genius” of Sophie Germain’

The Intermediate Axis Theorem

In 1985, cosmonaut Vladimir Dzhanibekov commanded a mission to repair the space station Salyut-7. During the operation, he flicked a wing-nut to remove it. As it left the end of the bolt, the nut continued to spin in space, but every few seconds, it turned over through {180^\circ}. Although the angular momentum did not change, the rotation axis moved in the body frame. The nut continued to flip back and forth, although there were no forces or torques acting on it.

Dzhanibekov-00

Flipping nut [image from Veritasium].

Continue reading ‘The Intermediate Axis Theorem’

An Attractive Spinning Toy: the Phi-TOP

It is fascinating to watch a top spinning. It seems to defy gravity: while it would topple over if not spinning, it remains in a vertical position as long as it is spinning rapidly.

There are many variations on the simple top. The gyroscope has played a vital role in navigation and in guidance and control systems. Many similar rotating toys have been devised. These include rattlebacks, tippe-tops and the Euler disk. The figure below shows four examples.

Spinning-Tops-4

(a) Simple top, (b) Rising egg, (c) Tippe-top, (d) Euler disk. [Image from website of Rod Cross.]

Continue reading ‘An Attractive Spinning Toy: the Phi-TOP’

The curious behaviour of the Wilberforce Spring.

The Wilberforce Spring (often called the Wilberforce pendulum) is a simple mechanical device that illustrates the conversion of energy between two forms. It comprises a weight attached to a spring that is free to stretch up and down and to twist about its axis.

Wilberforce-Spring

Wilberforce spring [image from Wikipedia Commons].}

In equilibrium, the spring hangs down with the pull of gravity balanced by the elastic restoring force. When the weight is pulled down and released, it immediately oscillates up and down.

However, due to a mechanical coupling between the stretching and torsion, there is a link between stretching and twisting motions, and the energy is gradually converted from vertical oscillations to axial motion about the vertical. This motion is, in turn, converted back to vertical oscillations, and the cycle continues indefinitely, in the absence of damping.

The conversion is dependent upon a resonance condition being satisfied: the frequencies of the stretching and twisting modes must be very close in value. This is usually achieved by having small adjustable weights mounted on the pendulum.

There are several videos of a Wilberforce springs in action on YouTube. For example, see here.

Continue reading ‘The curious behaviour of the Wilberforce Spring.’

Billiards & Ballyards

In (mathematical) billiards, the ball travels in a straight line between impacts with the boundary, when it changes suddenly and discontinuously We can approximate the hard-edged, flat-bedded billiard by a smooth sloping surface, that we call a “ballyard”. Then the continuous dynamics of the ballyard approach the motions on a billiard.

SAMSUNG

Elliptical tray in the form of a Ballyard.

Continue reading ‘Billiards & Ballyards’

Boxes and Loops

We will describe some generic behaviour patterns of dynamical systems. In many systems, the orbits exhibit characteristic patterns called boxes and loops. We first describe orbits for a simple pendulum, and then look at some systems in higher dimensions.

SimplePendulum-PhasePortrait-Colour

Phase portrait for a simple pendulum. Each line represents a different orbit.

Continue reading ‘Boxes and Loops’

Kepler’s Vanishing Circles Hidden in Hamilton’s Hodograph

The Greeks regarded the heavens as the epitome of perfection. All flaws and blemishes were confined to the terrestrial domain. Since the circle is perfect in its infinite symmetry, it was concluded by Aristotle that the Sun and planets move in circles around the Earth. Later, the astronomer Ptolemy accounted for deviations by means of additional circles, or epicycles. He stuck with the circular model [TM162 or search for “thatsmaths” at irishtimes.com].

Hodograph-AB

Left: Elliptic orbit with velocity vectors. Right: Hodograph, with all velocity vectors plotted from a single point.

Continue reading ‘Kepler’s Vanishing Circles Hidden in Hamilton’s Hodograph’

K3 implies the Inverse Square Law.

Kepler-DDR-Stamp-1971

Johannes Kepler. Stamp issued by the German Democratic Republic in 1971, the 400th anniversary of Kepler’s birth.

Kepler formulated three remarkable laws of planetary motion. He deduced them directly from observations of the planets, most particularly of the motion of Mars. The first two laws appeared in 1609 in Kepler’s Astronomia Nova. The first law (K1) describes the orbit of a planet as an ellipse with the Sun at one focus. The second law (K2) states that the radial line from Sun to planet sweeps out equal areas in equal times; we now describe this in terms of conservation of angular momentum.

The third law (K3), which appeared in 1619 in Kepler’s Harmonices Mundi, is of a different character. It does not relate to a single planet, but connects the motions of different planets. It states that the squares of the orbital periods vary in proportion to the cubes of the semi-major axes. For circular orbits, the period squared is proportional to the radius cubed.

Continue reading ‘K3 implies the Inverse Square Law.’

A Chirping Elliptic Rocker

Sitting at the breakfast table, I noticed that a small cereal bowl placed within another larger one was rocking, and that the period became shorter as the amplitude died down. What was going on? 

Rocking-Bowl

A small bowl with its handles resting on the rim of a larger bowl. The handles are approximately elliptical in cross-section.

Continue reading ‘A Chirping Elliptic Rocker’

The Kill-zone: How to Dodge a Sniper’s Bullet

Under mild simplifying assumptions, a projectile follows a parabolic trajectory. This results from Newton’s law of motion. Thus, for a fixed energy, there is an accessible region around the firing point comprising all the points that can be reached. We will derive a mathematical description for this kill-zone (the term kill-zone, used for dramatic effect, is the region embracing all the points that can be reached by a sniper’s bullet, given a fixed muzzle velocity).

Sniper-Killzone-1 Family of trajectories with fixed initial speed and varying launch angles. Two particular trajectories are shown in black. Continue reading ‘The Kill-zone: How to Dodge a Sniper’s Bullet’

Trappist-1 & the Age of Aquarius

The Pythagoreans believed that the planets generate sounds as they move through the cosmos. The idea of the harmony of the spheres was brought to a high level by Johannes Kepler in his book Harmonices Mundi, where he identified many simple relationships between the orbital periods of the planets [TM154 or search for “thatsmaths” at irishtimes.com].

Artist’s impressions of the TRAPPIST-1 planetary system

Artist’s impression of the Trappist-1 planetary system. Image from https://www.eso.org/public/images/eso1805b/

Kepler’s idea was not much supported by his contemporaries, but in recent times astronomers have come to realize that resonances amongst the orbits has a crucial dynamical function. Continue reading ‘Trappist-1 & the Age of Aquarius’

Galileo’s Book of Nature

In 1971, astronaut David Scott, standing on the Moon, dropped a hammer and a feather and found that both reached the surface at the same time. This popular experiment during the Apollo 15 mission was a dramatic demonstration of a prediction made by Galileo three centuries earlier. Galileo was born in Pisa on 15 February 1564, just 454 years ago today [TM133 or search for “thatsmaths” at irishtimes.com].

Apollo15-HammerFeather

Image: NASA

Continue reading ‘Galileo’s Book of Nature’

Slingshot Orbit to Asteroid Bennu

The Voyager 1 and Voyager 2 spacecraft have now left the solar system and will continue into deep space. How did we manage to send them so far? The Voyager spacecraft used gravity assists to visit Jupiter, Saturn, Uranus and Neptune in the late 1970s and 1980s. Gravity assist manoeuvres, known as slingshots, are essential for interplanetary missions. They were first used in the Soviet Luna-3 mission in 1959, when images of the far side of the Moon were obtained. Space mission planners use them because they require no fuel and the gain in speed dramatically shortens the time of missions to the outer planets.

OSIRIS-REx

Artist’s impression of OSIRIS-REx orbiting Bennu [Photo Credit: NASA]

Continue reading ‘Slingshot Orbit to Asteroid Bennu’

A Life-saving Whirligig

Modern science is big: the gravitational wave detector (LIGO) cost over a billion dollars, and the large hadron collider (LHC) in Geneva took decades to build and cost almost five billion euros. It may seem that scientific advances require enormous financial investment. So, it is refreshing to read in Nature Biomedical Engineering (Vol 1, Article 9) about the development of an ultra-cheap centrifuge that costs only a few cents to manufacture [TM111 or search for “thatsmaths” at irishtimes.com].

SAMSUNG

Whirligig, made from a plastic disk and handles and some string

Continue reading ‘A Life-saving Whirligig’

The Spire of Light

 

Towering over O’Connell Street in Dublin, the Spire of Light, at 120 metres, is about three times the height of its predecessor [TM109 or search for “thatsmaths” at irishtimes.com]. The Spire was erected in 2003, filling the void left by the destruction in 1966 of Nelson’s Pillar. The needle-like structure is a slender cone of stainless steel, the diameter tapering from 3 metres at the base to 15 cm at its apex. The illumination from the top section shines like a beacon throughout the city.

spire-nightscape

Continue reading ‘The Spire of Light’

The Ping Pong Pendulum

Galileo noticed the regular swinging of a candelabra in the cathedral in Pisa and speculated that the swing period was constant. This led him to use a pendulum to measure intervals of time for his experiments in dynamics. Bu not all pendulums behave like clock pendulums.

PingPongPendulum

The ping pong pendulum.

Continue reading ‘The Ping Pong Pendulum’

Which Way did the Bicycle Go?

“A bicycle, certainly, but not the bicycle,” said Holmes.

In Conan-Doyle’s short story The Adventure of the Priory School  Sherlock Holmes solved a mystery by deducing the direction of travel of a bicycle. His logic has been minutely examined in many studies, and it seems that in this case his reasoning fell below its normal level of brilliance.

As front wheel moves along the positive {x}-axis the back wheel, initially at {(0,a)}, follows a tractrix curve.

As front wheel moves along the positive x-axis the back wheel, initially at (0,a), follows a tractrix curve (see below).

Continue reading ‘Which Way did the Bicycle Go?’

Emmy Noether’s beautiful theorem

The number of women who have excelled in mathematics is lamentably small. Many reasons may be given, foremost being that the rules of society well into the twentieth century debarred women from any leading role in mathematics and indeed in science. But a handful of women broke through the gender barrier and made major contributions. [TM070: search for “thatsmaths” at irishtimes.com ]

Death of the philosopher Hypatia, by Louis Figuier [Wikimedia Commons].

Death of the philosopher Hypatia, by Louis Figuier
[Wikimedia Commons].

Continue reading ‘Emmy Noether’s beautiful theorem’

Falling Bodies [2]: Philae

The ESA Rosetta Mission, launched in March 2004, rendezvoused with comet 67P/C-G in August 2014. The lander Philae touched down on the comet on 12 November and came to rest after bouncing twice (the harpoon tethers and cold gas retro-jet failed to fire).

Comet 67P/Churyumov-Gerasimenko on 11 August 2014. The landing site is on the smaller knob, near the top of the image. Photo copyright ESA.

Comet 67P/Churyumov-Gerasimenko on 11 August 2014. The landing site is on the smaller knob, near the top of the image. Photo copyright ESA.

Continue reading ‘Falling Bodies [2]: Philae’

Falling Bodies [1]: Sky-diving

Aristotle was clear: heavy bodies fall faster than light ones. He arrived at this conclusion by pure reasoning, without experiment. Today we insist on a physical demonstration before such a conclusion is accepted. Galileo tested Aristotle’s theory: he dropped bodies of different weights simultaneously from the Leaning Tower of Pisa and found that, to a good approximation, they hit the ground at the same time.

Aristotle and Galileo.

Aristotle and Galileo.

Continue reading ‘Falling Bodies [1]: Sky-diving’

Light Weight (*)

Does light have weight? Newton thought that light was influenced by gravity and, using his laws of motion, we can calculate how gravity bends a light beam. The effect is observable during a total eclipse of the sun: photographs of the sky are compared with the same region when the sun is elsewhere and a radial displacement of the star images is found. But the amount predicted by Newton’s laws is only half the observed value.

Solar-Eclipse Continue reading ‘Light Weight (*)’

“Come See the Spinning Globe”

That’s Maths in The Irish Times this week (TM050, or Search for “thatsmaths” at irishtimes.com) is about how a simple pendulum can demonstrate the rotation of the Earth.

Reconstruction of Foucault's demonstration in 1902 (illustration from the cover of WIlliam Tobin's book [1]).

Reconstruction of Foucault’s demonstration. Original experiment in 1851. [Illustration (1902) from the cover of WIlliam Tobin’s book [1].]

Continue reading ‘“Come See the Spinning Globe”’

Balancing a Pencil

Does quantum mechanics matter at everyday scales? It would be very surprising if quantum effects were to be manifest in a macroscopic system. This has been claimed for the problem of balancing a pencil on its tip. But the behaviour of a tipping pencil can be explained in purely classical terms.

A pencil balanced on its point. Is there a trick? Yes: see below.

A pencil balanced on its point. Is there a trick? See below.

Continue reading ‘Balancing a Pencil’

Clothoids Drive Us Round the Bend

The article in this week’s That’s Maths column in the Irish Times ( TM043 ) is about the mathematical curves called clothoids, used in the design of motorways.

*        *       *

Continue reading ‘Clothoids Drive Us Round the Bend’

Rollercoaster Loops

We all know the feeling when a car takes a corner too fast and we are thrown outward by the centrifugal force. This effect is deliberately exploited, and accentuated, in designing rollercoasters: rapid twists and turns, surges and plunges thrill the willing riders.

Many modern rollercoasters have vertical loops that take the trains through 360 degree turns with the riders upside-down at the apex. These loops are never circular, for reasons we will explain.
Continue reading ‘Rollercoaster Loops’

Solar System Perturbations

Remarkable progress in understanding the dynamics of the planets has been possible thanks to their relatively small masses and the overwhelming dominance of the Sun. The figure below shows the relative masses of the Sun, planets and some natural satellites, taking the mass of Earth to be unity.

Solar-System-Relative-Masses

Continue reading ‘Solar System Perturbations’

Robots & Biology

The article in this week’s That’s Maths column in the Irish Times ( TM037 ) is about connections between robotics and biological systems via mechanics.

The application of mathematics in biology is a flourishing research field. Most living organisms are far too complex to be modelled in their entirety, but great progress is under way in simulating individual organs and modelling specific functions such as blood-flow and locomotion.

Continue reading ‘Robots & Biology’

White Holes in the Kitchen Sink

A tidal bore is a wall of water about a metre high travelling rapidly upstream as the tide floods in. It occurs where the tidal range is large and the estuary is funnel-shaped (see previous post on this blog). The nearest river to Ireland where bores can be regularly seen is the Severn, where favourable conditions for these hydraulic jumps occur a few times each year.

But you do not have to leave home to observe hydraulic jumps. Continue reading ‘White Holes in the Kitchen Sink’

Interesting Bores

This week’s That’s Maths column in the Irish Times ( TM036 ) is about bores. But don’t be put off: they are very interesting.

Continue reading ‘Interesting Bores’

The Antikythera Mechanism

The article in this week’s That’s Maths column in the Irish Times ( TM033 ) is about the Antikythera Mechanism, which might be called the First Computer.

Two Storms

Two storms, separated by 2000 years, resulted in the loss and the recovery of one of the most amazing mechanical devices made in the ancient world.  The first storm, around 65 BC, wrecked a Roman vessel bringing home loot from Asia Minor. The ship went down near the island of Antikythera, between the Greek mainland and Crete. Continue reading ‘The Antikythera Mechanism’

Sonya Kovalevskaya

A brilliant Russian mathematician, Sonya Kovalevskaya, is the topic of the That’s Maths column this week (click Irish Times: TM029 and search for “thatsmaths”).

In the nineteenth century it was extremely difficult for a woman to achieve distinction in the academic sphere, and virtually impossible in the field of mathematics. But a few brilliant women managed to overcome all the obstacles and prejudice and reach the very top. The most notable of these was the remarkable Russian, Sonya Kovalevskya.

Continue reading ‘Sonya Kovalevskaya’

New Estimate of the Speed of Light

A team of German scientists have recently discovered a new method of measuring the speed of light using Einstein’s famous equation

E = m c2

Continue reading ‘New Estimate of the Speed of Light’

A Hole through the Earth

“I wonder if I shall fall right through the earth”, thought Alice as she fell down the rabbit hole, “and come out in the antipathies”. In addition to the author of the “Alice” books, Lewis Carroll – in real life the mathematician Charles L. Dodgson – many famous thinkers have asked what would happen if one fell down a hole right through the earth’s centre.

Galileo gave the answer to this question: an object dropped down a hole piercing the earth diametrically would fall with increasing speed until the centre, where it would be moving at about 8 km per second, after which it would slow down until reaching the other end, where it would fall back again, oscillating repeatedly between the two ends.
Continue reading ‘A Hole through the Earth’

The Atmospheric Railway

Atmospheric pressure acting on a surface the size of a large dinner-plate exerts a force sufficient to propel a ten ton train! The That’s Maths column ( TM027 ) in the Irish Times this week is about the atmospheric railway.
Continue reading ‘The Atmospheric Railway’

The Swingin’ Spring

Oscillations surround us, pervading the universe from the vibrations of subatomic particles to fluctuations at galactic scales. Our hearts beat rhythmically and we are sensitive to the oscillations of light and sound. We are vibrating systems.

An exhibition called Oscillator is running at the Trinity College Science Gallery and this week’s “That’s Maths” column ( TM015 ) gives a taste of what can be seen there.

Fascinating Dynamics
Continue reading ‘The Swingin’ Spring’

Falling Slinky

If you drop a slinky from a hanging position, something very surprising happens. The bottom remains completely motionless until the top, collapsing downward coil upon coil, crashes into it.

How can this be so? Continue reading ‘Falling Slinky’


Last 50 Posts

Categories