Archive for the 'Occasional' Category

Taylor Expansions from India


NPG 1920; Brook Taylor probably by Louis Goupy

FIg. 1: Brook Taylor (1685-1731). Image from NPG.

The English mathematician Brook Taylor (1685-1731) introduced the calculus of finite differences in his Methodus Incrementorum Directa et Inversa, published in 1715. This work contained the famous formula known today as Taylor’s formula. In 1772, Lagrange described it as “the main foundation of differential calculus” (Wikipedia: Brook Taylor). Taylor also wrote a treatise on linear perspective (see Fig. 1).

It is noteworthy that the series for {\sin x}, {\cos x} and {\arctan x} were known to mathematicians in India about 400 years before Taylor’s time.
Continue reading ‘Taylor Expansions from India’

Which is larger, e^pi or pi^e?

Which is greater, {x^y} or {y^x}? Of course, it depends on the values of x and y. We might consider a particular case: Is {e^\pi > \pi^e} or {\pi^e > e^\pi}?


Contour plot of x^y – y^x, positive in the yellow regions, negative in the blue ones.

Continue reading ‘Which is larger, e^pi or pi^e?’

That’s Maths Book Published

A book of mathematical articles, That’s Maths, has just been published. The collection of 100 articles includes pieces that have appeared in The Irish Times over the past few years, blog posts from this website and a number of articles that have not appeared before.


The book has been published by Gill Books and copies are available through all good booksellers in Ireland, and from major online booksellers. An E-Book is also available online.

Continue reading ‘That’s Maths Book Published’

Kepler’s Magnificent Mysterium Cosmographicum


Johannes Kepler’s amazing book, Mysterium Cosmographicum, was published in 1596. Kepler’s central idea was that the distance relationships between the six planets (only six were known at that time) could be represented by six spheres separated by the five Platonic solids. For each of these regular polyhedra, there is an inner and an outer sphere. The inner sphere is tangent to the centre of each face and the outer sphere contains all the vertices of the polyhedron.


Figure generated using Mathematica Demonstration [2].

Continue reading ‘Kepler’s Magnificent Mysterium Cosmographicum’

Negative Number Names

The counting numbers that we learn as children are so familiar that using them is second nature. They bear the appropriate name natural numbers. From then on, names of numbers become less and less apposite.


Continue reading ‘Negative Number Names’

Venn Again’s Awake

We wrote about the basic properties of Venn diagrams in an earlier post. Now we take a deeper look. John Venn, a logician and philosopher, born in Hull, Yorkshire in 1834, introduced the diagrams in a paper in 1880 and in his book Symbolic Logic, published one year later. The diagrams were used long before Venn’s paper, but he formalized and popularized them. He used them as logical diagrams: the interior of each set means the truth of a particular proposition. Unions and intersections of sets correspond to the logical operators OR and AND.


Continue reading ‘Venn Again’s Awake’

Heron’s Theorem: a Tool for Surveyors

Heron was one of the great Greek mathematicians of Alexandria, following in the tradition of Euclid, Archimedes, Eratosthenes and Apollonius. He lived in the first century, from about AD 10 to AD 70. His interests were in practical rather than theoretical mathematics and he wrote on measurement, mechanics and engineering. He devised a steam-powered device and a wind-wheel that operated an organ. He is regarded as the greatest experimenter of antiquity, but it is for a theorem in pure geometry that mathematicians remember him today.


Heron of Alexandria. Triangle of sides a, b and c and altitude h.

Continue reading ‘Heron’s Theorem: a Tool for Surveyors’

Slicing Doughnuts


It is well-known that an ellipse is the locus of all points such that the sum of their distances from two fixed points, the foci, is constant. Thus, a gardener may map out an elliptical flower-bed by driving two stakes into the ground, looping a rope around them and pulling it taut with a pointed stick, tracing out a curve on the ground.

Continue reading ‘Slicing Doughnuts’

A Toy Example of RSA Encryption

The RSA system has been presented many times, following the excellent expository article of Martin Gardner in the August 1977 issue of Scientific American. There is no need for yet another explanation of the system; the essentials are contained in the Wikipedia article RSA (cryptosystem), and in many other articles.


L2R: Ron Rivest, Adi Shamir, Len Adleman (2003). Image from

The purpose of this note is to give an example of the method using numbers so small that the computations can easily be carried through by mental arithmetic or with a simple calculator.

Continue reading ‘A Toy Example of RSA Encryption’

Random Harmonic Series

We consider the convergence of the random harmonic series

\displaystyle R = \sum_{n=1}^{\infty}\frac{\sigma_{n}}{n}

where {\sigma_n\in\{-1,+1\}} is chosen randomly with probability {1/2} of being either plus one or minus one. It follows from the Kolmogorov three-series theorem that the series is “almost surely” convergent.


Continue reading ‘Random Harmonic Series’


You can put a square peg in a round hole.

Shapes between circles and squares have proved invaluable to engineers and have also found their way onto our dinner tables. A plate in the shape of a `squircle’ is shown in this figure .


Squircular plate: holds more food and is easier to store.

Continue reading ‘Squircles’

Lecture sans paroles: the factors of M67

In 1903 Frank Nelson Cole delivered an extraordinary lecture to the American Mathematical Society. For almost an hour he performed a calculation on the chalkboard without uttering a single word. When he finished, the audience broke into enthusiastic applause.


Continue reading ‘Lecture sans paroles: the factors of M67’

Bending the Rules to Square the Circle

Squaring the circle was one of the famous Ancient Greek mathematical problems. Although studied intensively for millennia by many brilliant scholars, no solution was ever found. The problem requires the construction of a square having area equal to that of a given circle. This must be done in a finite number of steps, using only ruler and compass.


Taking unit radius for the circle, the area is π, so the square must have a side length of √π. If we could construct a line segment of length π, we could also draw one of length √π. However, the only constructable numbers are those arising from a unit length by addition, subtraction, multiplication and division, together with the extraction of square roots.

Continue reading ‘Bending the Rules to Square the Circle’

Prime Generating Formulae

The prime numbers have challenged and perplexed the greatest mathematicians for millennia. Shortly before he died, the brilliant Hungarian number theorist Paul Erdös said “it will be another million years, at least, before we understand the primes”.


A remarkable polynomial: Theorem 1 from Jones et al., 1976.

Continue reading ‘Prime Generating Formulae’

Mathematics Everywhere (in Blackrock Station)

Mathematics is everywhere. We are often unaware of it but, when we observe our environment consciously, we can see mathematical structures all around us.


This footbridge is a cornucopia of mathematical forms.

Continue reading ‘Mathematics Everywhere (in Blackrock Station)’

Ramanujan’s Astonishing Knowledge of 1729

Question: What is the connection between Ramanujan’s number 1729 and Fermat’s Last Theorem? For the answer, read on.

The story of how Srinivasa Ramanujan responded to G. H. Hardy’s comment on the number of a taxi is familiar to all mathematicians. With the recent appearance of the film The Man who Knew Infinity, this curious incident is now more widely known.


Result of a Google image search for “K3 Surface”.

Visiting Ramanujan in hospital, Hardy remarked that the number of the taxi he had taken was 1729, which he thought to be rather dull. Ramanujan replied “No, it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways.”

Continue reading ‘Ramanujan’s Astonishing Knowledge of 1729′

Sigmoid Functions: Gudermannian and Gompertz Curves

The Gudermannian is named after Christoph Gudermann (1798–1852). The Gompertz function is named after Benjamin Gompertz (1779–1865). These are two amongst several sigmoid functions. Sigmoid functions find applications in many areas, including population dynamics, artificial neural networks, cartography, control systems and probability theory. We will look at several examples in this class of functions.


Continue reading ‘Sigmoid Functions: Gudermannian and Gompertz Curves’

The Power Tower Fractal

We can construct a beautiful fractal set by defining an operation of iterating exponentials and applying it to the numbers in the complex plane. The operation is tetration and the fractal is called the power tower fractal or sometimes the tetration fractal. A detail of the set is shown in the figure here.


Detail of the power tower fractal.

Continue reading ‘The Power Tower Fractal’

The Imaginary Power Tower: Part II

This is a continuation of last week’s post: LINK

The complex power tower is defined by an `infinite tower’ of exponents:

\displaystyle Z(z) = {z^{z^{z^{.^{.^{.}}}}}} \,.

The sequence of successive approximations to this function is

z_0 = 1 \qquad z_{1} = z \qquad z_{2} = z^{z} \qquad \dots \qquad z_{n+1} = z^{z_n} \qquad \dots

If the sequence {\{z_n(z)\}} converges it is easy to solve numerically for a given {z }.

Pursuit-triangleIn Part I we described an attempt to fit a logarithmic spiral to the sequence {\{z_n(i)\}}. While the points of the sequence were close to such a curve they did not lie exactly upon it. Therefore, we now examine the asymptotic behaviour of the sequence for large {n}.

Continue reading ‘The Imaginary Power Tower: Part II’

The Imaginary Power Tower: Part I

The function defined by an `infinite tower’ of exponents,

\displaystyle y(x) = {x^{x^{x^{.^{.^{.}}}}}}

is called the Power Tower function. We consider the sequence of successive approximations to this function:

\displaystyle y_0 = 1 \qquad y_1 = x \qquad \dots \qquad y_{n+1} = x^{y_n} \,.

As {n\rightarrow\infty}, the sequence {\{y_n\}} converges for {e^{-e}<x<e^{1/e}}. This result was first proved by Euler. For an earlier post on the power tower, click here.

Continue reading ‘The Imaginary Power Tower: Part I’

Peano Music

The links between mathematics and music are manifold. Mathematics can be set to music in a simple but surprising manner. For the award ceremony of the Gödel Medal in 2014, a musical interpretation of Gödel’s incompleteness Theorems was written by Danish composer Niels Marthinsen. It encodes the basic axioms of number theory that form the focus of Gödel’s Theorems.


The Peano Axioms in symbolic form.

Continue reading ‘Peano Music’

Bertrand’s Chord Problem

The history of probability theory has been influenced strongly by paradoxes, results that seem to defy intuition. Many of these have been reviewed in a recent book by Prakash Gorroochurn [2012]. We will have a look at Bertrand’s Paradox (1889), a simple result in geometric probability.

Bertrand-00Let’s start with an equilateral triangle and add an inscribed circle and a circumscribed circle. It is a simple geometric result that the radius of the outer circle is twice that of the inner one. Bertrand’s problem may be stated thus:

Problem: Given a circle, a chord is drawn at random. What is the probability that the chord length is greater than the side of an equilateral triangle inscribed in the circle?

Continue reading ‘Bertrand’s Chord Problem’

Vanishing Zigzags of Unbounded Length

We will construct a sequence of functions on the unit interval such that it converges uniformly to zero while the arc-lengths diverge to infinity.


Black: Frog hop. Blue: Cricket hops. Magenta: Flea hops.

Continue reading ‘Vanishing Zigzags of Unbounded Length’

Franc-carreau or Fair-square

Franc-carreau is a simple game of chance, like the roll-a-penny game often seen at fairs and fêtes. A coin is tossed or rolled down a wooden chute onto a large board ruled into square segments. If the player’s coin lands completely within a square, he or she wins a coin of equal value. If the coin crosses a dividing line, it is lost.


The playing board for Franc-Carreau is shown above, together with a winning coin (red) contained within a square and a loosing one (blue) crossing a line. As the precise translation of franc-carreau appears uncertain, the name “fair square” would seem appropriate.

The question is: What size should the coin be to ensure a 50% chance of winning?

Continue reading ‘Franc-carreau or Fair-square’

Prime Number Record Smashed Again

Once again the record for the largest prime number has been shattered. As with all recent records, the new number is a Mersenne prime, a number of the form

Mp = 2p 1

where p itself is a prime. Participants in a distributed computing project called GIMPS (Great Internet Mersenne Prime Search) continue without rest to search for ever-larger primes of this form.

Most of the recent large primes have been found in the GIMPS project (for an earlier post on GIMPS, click Mersennery Quest. The project uses a search algorithm called the Lucas-Lehmer primality test, which is particularly suitable for finding Mersenne primes. The test, which was originally devised by Edouard Lucas in the nineenth century and extended by Derek Lehmer in 1930, is very efficient on binary computers.

Continue reading ‘Prime Number Record Smashed Again’

Twin Peaks Entropy

Next week there will be a post on tuning pianos using a method based on entropy. In preparation for that, we consider here how the entropy of a probability distribution function with twin peaks changes with the separation between the peaks.

Continue reading ‘Twin Peaks Entropy’

Squaring the Circular Functions

The circular functions occur throughout mathematics. Fourier showed that, under very general assumptions, an arbitrary function can be decomposed into components each of which is a circular function. The functions get their name from their use in defining a circle in parametric form: if

\displaystyle x = a\cos t \qquad\mbox{and}\qquad y = a\sin t

then {x^2 + y^2 = a^2}, the usual equation for a circle in Cartesian coordinates. In the figure, we plot the familiar sinusoid, which has a period of {2\pi}.

Wild-Functions-01 Continue reading ‘Squaring the Circular Functions’

Factorial 52: A Stirling Problem

How many ways can a deck of cards be arranged? It is very easy to calculate the answer, but very difficult to grasp its significance.


Continue reading ‘Factorial 52: A Stirling Problem’

The Ping Pong Pendulum

Galileo noticed the regular swinging of a candelabra in the cathedral in Pisa and speculated that the swing period was constant. This led him to use a pendulum to measure intervals of time for his experiments in dynamics. Bu not all pendulums behave like clock pendulums.


The ping pong pendulum.

Continue reading ‘The Ping Pong Pendulum’

Life’s a Drag Crisis

The character of fluid flow depends on a dimensionless quantity, the Reynolds number. Named for Belfast-born scientist Osborne Reynolds, it determines whether the flow is laminar (smooth) or turbulent (rough). Normally the drag force increases with speed.

The Reynolds number is defined as Re = VL/ν where V is the flow speed, L the length scale and ν the viscosity coefficient. The transition from laminar to turbulent flow occurs at a critical value of Re which depends on details of the system, such as surface roughness.

Continue reading ‘Life’s a Drag Crisis’

Numbering the Family Tree

The availability of large historical data sets online has spurred interest in genealogy and family history. Anyone who has assembled information knows how important it is to organize it systematically. A simple family tree showing the direct ancestors of Wanda One is shown here:

Ahnentafel-Chart Continue reading ‘Numbering the Family Tree’

Mowing the Lawn in Spirals

Like a circle in a spiral / Like a wheel within a wheel / Never ending or beginning / On an ever-spinning reel.    The Windmills Of Your Mind

Broadly speaking, a spiral curve originates at a central point and gets further away (or closer) as it revolves around the point. Spirals abound in nature, being found at all scales from the whorls at our finger-tips to vast rotating spiral galaxies. The seeds in a sunflower are arranged in spiral segments. In the technical world, the grooves of a gramophone record and the coils of a watch balance-spring are spiral in form.

Left: Archimedean spiral. Centre: Fermat spiral. Right: Hyperbolic spiral.

Left: Archimedean spiral. Centre: Fermat spiral. Right: Hyperbolic spiral.

Continue reading ‘Mowing the Lawn in Spirals’

A Few Wild Functions

Sine Function: {\mathbf{y=\sin x}}

The function {y=\sin x} is beautifully behaved, oscillating regularly along the entire real line {\mathbb{R}} (it is also well-behaved for complex {x} but we won’t consider that here).

The sine function, the essence of good behaviour.

The sine function, the essence of good behaviour.

Continue reading ‘A Few Wild Functions’

Which Way did the Bicycle Go?

“A bicycle, certainly, but not the bicycle,” said Holmes.

In Conan-Doyle’s short story The Adventure of the Priory School  Sherlock Holmes solved a mystery by deducing the direction of travel of a bicycle. His logic has been minutely examined in many studies, and it seems that in this case his reasoning fell below its normal level of brilliance.

As front wheel moves along the positive {x}-axis the back wheel, initially at {(0,a)}, follows a tractrix curve.

As front wheel moves along the positive x-axis the back wheel, initially at (0,a), follows a tractrix curve (see below).

Continue reading ‘Which Way did the Bicycle Go?’

Hamming’s Smart Error-correcting Codes

Richard Hamming (1915 – 1998)

Richard Hamming (1915 – 1998)

In the late 1940s, Richard Hamming, working at Bell Labs, was exasperated with the high level of errors occurring in the electro-mechanical computing equipment he was using. Punched card machines were constantly misreading, forcing him to restart his programs. He decided to do something about it. This was when error-correcting codes were invented.

A simple way to detect errors is to send a message twice. If both versions agree, they are probably correct; if not, there is an error somewhere. But the discrepancy gives us no clue where the error lies. Sensing the message three times is better: if two versions agree, we assume they are correct and ignore the third version. But there is a serious overhead: the total data transmitted is three times the data volume; the information factor is 1/3.

Continue reading ‘Hamming’s Smart Error-correcting Codes’

Holbein’s Anamorphic Skull

Hans Holbein the Younger, court painter during the reign of Henry VIII, produced some spectacular works. Amongst the most celebrated is a double portrait of Jean de Dinteville, French Ambassador to Henry’s court, and Georges de Selve, Bishop of Lavaur. Painted by Holbein in 1533, the picture, known as The Ambassadors, hangs in the National Gallery, London.

Double Portrait of Jean de Dinteville and Georges de Selve (

Double Portrait of Jean de Dinteville and Georges de Selve (“The Ambassadors”),
Hans Holbein the Younger, 1533. Oil and tempera on oak, National Gallery, London

Continue reading ‘Holbein’s Anamorphic Skull’

Thomas Harriot: Mathematician, Astronomer and Navigator

Sir Walter Raleigh, adventurer, explorer and privateer, was among most colourful characters of Tudor times. He acquired extensive estates in Waterford and Cork, including Molana Abbey near Youghal, which he gave to his friend and advisor, the brilliant mathematician and astronomer Thomas Harriot.

Thomas Harriot (1560 - 1621)

Left: Sir Walter Raleigh (1552-1618). Right: Thomas Harriot (1560?-1621)

Continue reading ‘Thomas Harriot: Mathematician, Astronomer and Navigator’

Buffon was no Buffoon

The Buffon Needle method of estimating {\pi} is hopelessly inefficient. With one million throws of the needle we might expect to get an approximation accurate to about three digits. The idea is more of philosophical than of practical interest. Buffon never envisaged it as a means of computing {\pi}.

Image drawn with Mathematica package in: Siniksaran, Erin, 2008: Throwing Buffon’s Needle [Reference below].

Continue reading ‘Buffon was no Buffoon’

Who Needs EirCode?

The idea of using two numbers to identify a position on the Earth’s surface is very old. The Greek astronomer Hipparchus (190–120 BC) was the first to specify location using latitude and longitude. However, while latitude could be measured relatively easily, the accurate determination of longitude was more difficult, especially for sailors out of site of land.

OSi Mapviewer. XY coordinates indicated at bottom left.

OSi Mapviewer. XY coordinates indicated at bottom left.

French philosopher, scientist and mathematician René Descartes demonstrated the power of coordinates and his method of algebraic geometry revolutionized mathematics. It had a profound, unifying effect on pure mathematics and greatly increased the ability of maths to model the physical world.

Continue reading ‘Who Needs EirCode?’

Bent Coins: What are the Odds?

If we toss a `fair’ coin, one for which heads and tails are equally likely, a large number of times, we expect approximately equal numbers of heads and tails. But what is `approximate’ here? How large a deviation from equal values might raise suspicion that the coin is biased? Surely, 12 heads and 8 tails in 20 tosses would not raise any eyebrows; but 18 heads and 2 tails might.

Bent-Coin-2 Continue reading ‘Bent Coins: What are the Odds?’

Fun and Games on a Honeycombed Rhomboard.

Hex is an amusing game for two players, using a board or sheet of paper divided into hexagonal cells like a honeycomb. The playing board is rhomboidal in shape with an equal number of hexagons along each edge. Players take turns placing a counter or stone on a single cell of the board. One uses white stones, the other black. Or red and blue markers can be used on a paper board.

11 x 11 Hex Board. Image from

11 x 11 Hex Board. Image from

Continue reading ‘Fun and Games on a Honeycombed Rhomboard.’

Increasingly Abstract Algebra

In the seventeenth century, the algebraic approach to geometry proved to be enormously fruitful. When René Descartes (1596-1650) developed coordinate geometry, the study of equations (algebra) and shapes (geometry) became inextricably interlinked. The move towards greater abstraction can make mathematics appear more abstruse and impenetrable, but it brings greater clarity and power, and can lead to surprising unifications.

Evariste Galois, Sophus Lie and Emmy Noether.

Evariste Galois, Sophus Lie and Emmy Noether.

Continue reading ‘Increasingly Abstract Algebra’

Game Theory & Nash Equilibrium

Game theory deals with mathematical models of situations involving conflict, cooperation and competition. Such situations are central in the social and behavioural sciences. Game Theory is a framework for making rational decisions in many fields: economics, political science, psychology, computer science and biology. It is also used in industry, for decisions on manufacturing, distribution, consumption, pricing, salaries, etc.

Theory of games and economic behavior. Centre: John von Neumann. Right: Oskar Morgenstern.

Theory of Games and Economic Behavior.
Centre: John von Neumann. Right: Oskar Morgenstern.

During the Cold War, Game Theory was the basis for many decisions concerning nuclear strategy that affected the well-being of the entire human race.

Continue reading ‘Game Theory & Nash Equilibrium’

Maps on the Web

In a nutshell:  In web maps, geographical coordinates are projected as if the Earth were a perfect sphere. The results are great for general use but not for high-precision applications. WM-vs-Merc-Detail Continue reading ‘Maps on the Web’

Eccentric Pizza Slices

Suppose six friends visit a pizzeria and have enough cash for just one big pizza. They need to divide it fairly into six equal pieces. That is simple: cut the pizza in the usual way into six equal sectors.

But suppose there is meat in the centre of the pizza and some of the friends are vegetarians. How can we cut the pizza into slices of identical shape and size, some of them not including the central region?

A pizza with various toppings. Image: Pizza Masetti Craiova, Romania (Flickr)  [CC BY 2.0 (], via Wikimedia Commons.

A pizza with various toppings. Image: Pizza Masetti Craiova, Romania (Flickr) [CC BY 2.0 (, via Wikimedia Commons.

Have a think about this before reading on. There is more than one solution.

Continue reading ‘Eccentric Pizza Slices’

Brouwer’s Fixed-Point Theorem

A climber sets out at 8 a.m. from sea-level, reaching his goal, a 2,000 metre peak, ten hours later. He camps at the summit and starts his return the next morning at 8 a.m. After a leisurely descent, he is back at sea-level ten hours later.

Climber-Up-Then-DownIs there some time of day at which his altitude is identical on both days? Try to answer this before reading on.
Continue reading ‘Brouwer’s Fixed-Point Theorem’

Tap-tap-tap the Cosine Button

Tap any number into your calculator. Yes, any number at all, plus or minus, big or small. Now tap the cosine button. You will get a number in the range [ -1, +1 ]. Now tap “cos” again and again, and keep tapping it repeatedly (make sure that angles are set to radians and not degrees). The result is a sequence of numbers that converge towards the value 0.739085 … .

CosCosCos Continue reading ‘Tap-tap-tap the Cosine Button’

The Hodograph

The Hodograph is a vector diagram showing how velocity changes with position or time. It was made popular by William Rowan Hamilton who, in 1847, gave an account of it in the Proceedings of the Royal Irish Academy. Hodographs are valuable in fluid dynamics, astronomy and meteorology.

Hodograph plot of wind vectors at five heights in the troposphere. This indicates vertical wind shear and also horizontal temperature gradients. Since the wind veers with height between V2 and V3, it is blowing warmer air north-eastwards to a colder region (image source: NOAA).

Hodograph plot of wind vectors at five heights in the troposphere. This indicates vertical wind shear and also horizontal temperature gradients. Since the wind veers with height between V2 and V3, it is blowing warmer air north-eastwards to a colder region (image source: NOAA).

Continue reading ‘The Hodograph’

Golden Moments

Suppose a circle is divided by two radii and the two arcs a and b are in the golden ratio:

b / a = ( a + b ) / b = φ ≈ 1.618

Then the smaller angle formed by the radii is called the golden angle. It is equal to about 137.5° or 2.4 radians. We will denote the golden angle by γ. Its exact value, as a fraction of a complete circle, is ( 3 – √5 ) / 2 ≈ 0.382 cycles.

GoldenAngle Continue reading ‘Golden Moments’

A King of Infinite Space: Euclid I.

O God, I could be bounded in a nutshell, and count myself a king of infinite space …

Euclid. Left: panel from the Series Famous Men by Justus of Ghent. Right: Statue in the Oxford University Museum of Natural History.

Euclid. Left: panel from series Famous Men by Justus of Ghent. Right: Statue in the Oxford University Museum of Natural History.

Continue reading ‘A King of Infinite Space: Euclid I.’

Last 50 Posts